首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
To prepare a cross-linked proton exchange membrane with low methanol permeability and high proton conductivity, poly (vinyl alcohol) is first blended with sulfonated poly (arylene ether ketone) bearing carboxylic acid groups (SPAEK-C) and then heated to induce a cross-linking reaction between the carboxyl groups in SPAEK-C and the hydroxyl groups in PVA. Fourier transform infrared spectroscopy is used to characterize and confirm the structure of SPAEK-C and the cross-linked membranes. The proton conductivity of the cross-linked membrane with 15% PVA in weight reaches up to 0.18 S cm−1 at 80 °C (100% relative humidity), which is higher than that of Nafion membrane, while the methanol permeability is nearly five times lower than Nafion. The ion-exchange capacity, water uptake and thermal stability are investigated to confirm their applicability in fuel cells.  相似文献   

2.
In order to prepare a hybrid proton exchange membrane with low methanol permeability and high proton conductivity, two silane monomers, namely 3-glycidoxypropyl-trimethoxysilane (GPTMS) and 3-mercaptopropyl-trimethoxysilane (MPTMS) are first blended with a sulfonated poly(arylene ether ketone) (SPAEK). Then the blended membrane is heated to induce the grafting of GPTMS onto SPAEK. Finally, a hydrolysis-condensation is performed on the grafted membrane to induce cross-linking. The -SH groups of MPTMS are oxidized to sulfonic acid groups, which are attributed to enhance the proton conductivity of hybrid membranes. Fourier transform infrared spectroscopy is used to characterize and confirm the structures of SPAEK and these cross-linked hybrid membranes. The proton conductivity of a cross-linked hybrid membrane G50M50 reaches up to 0.20 S cm−1 at 80 °C, which is comparable to that of SPAEK and much higher than that of Nafion. Meanwhile, the methanol permeability is nearly three times lower than that of Nafion and two times lower than that of SPAEK. The ion-exchange capacity, water uptake, membrane swelling and thermal stability are also investigated to confirm their applicability in fuel cells.  相似文献   

3.
A series of cross-linked membranes based on SPEEK/Nafion have been prepared to improve methanol resistance and dimension stability of SPEEK membrane for the usage in the direct methanol fuel cells (DMFCs). Sulfonated diamine monomer is synthesized and used as cross-linker to improve the dispersion of Nafion in the composite membranes and decrease the negative effect of cross-linking on proton conductivity of membranes. FT-IR analysis shows that the cross-linking reaction is performed successfully. The effects of different contents of Nafion on the properties of cross-linked membranes are investigated in detail. All the cross-linked membranes show lower methanol permeability and better dimensional stability compared with the pristine SPEEK membrane. SPEEK-N30 with the 30 wt % Nafion shows a methanol permeability of 0.73 × 10−6 cm2 s−1 and a water uptake of 24.4% at 25 °C, which are lower than those of the pristine membrane. Meanwhile, the proton conductivity of SPEEK-N30 still remains at 0.041 S cm−1 at 25 °C, which is comparable to that of the pristine SPEEK membrane. All the results indicate that these cross-linked membranes based on SPEEK/Nafion show good prospect for the use as proton exchange membranes.  相似文献   

4.
In this paper, the proton exchange membrane prepared by covalent-ionically cross-linking water soluble sulfonated-sulfinated poly(oxa-p-phenylene-3,3-phthalido-p-phenylene-oxa-p-phenylene-oxy-phenylene) (SsPEEK-WC) is reported. Compared with covalent cross-linked PEEK-WC membrane, this covalent-ionically cross-linked PEEK-WC membrane exhibits extremely reduced water uptake and methanol permeability, but just slightly sacrificed proton conductivity. The proton conductivity of the covalent-ionically cross-linked PEEK-WC membrane reaches to 2.1 × 10−2 S cm−1 at room temperature and 4.1 × 10−2 S cm−1 at 80 °C. The methanol permeability is 1.3 × 10−7 cm2 s−1, 10 times lower than that of Nafion® 117 membrane. The results suggest that the covalent-ionically cross-linked PEEK-WC membrane is a promising candidate for direct methanol fuel cell because of low methanol permeability and adequate proton conductivity.  相似文献   

5.
Nafion 117 membranes were modified by in situ chemical polymerization of 3,4-ethylenedioxythiophene using H2O2 as oxidant for direct methanol fuel cell application. Methanol permeability and proton conductivity of the poly(3,4-ethylenedioxythiophene)-modified Nafion membranes as a function of temperature were investigated. An Arrhenius-type dependency of methanol permeability and proton conductivity on temperature exists for all the modified membranes. Compared with Nafion 117 membrane at 60 °C, the methanol permeability of these modified membranes is reduced from 30% to 72%, while the proton conductivity is decreased from 4% to 58%, respectively. Because of low methanol permeability and adequate proton conductivity, the DMFC performances of these modified membranes were better than that of Nafion 117 membrane. A maximum power density of 48.4 mW cm−2 was obtained for the modified membrane, while under same condition Nafion 117 membrane got 37 mW cm−2.  相似文献   

6.
A series of novel sulfonated poly(ether ether ketone)s containing a cyanophenyl group (SPEEKCNxx) are prepared based on (4-cyano)phenylhydroquinone via nucleophilic substitution polycondensation reactions. To further improve their properties, novel composite membranes composed of sulfonated poly(ether ether ketone)s containing cyanophenyl group as an acidic component and aminated poly(aryl ether ketone) as a basic component are successfully prepared. Most of the membranes exhibit excellent thermal, oxidative and dimensional stability, low-swelling ratio, high proton conductivity, low methanol permeability and high selectivity. The proton conductivities of the membranes are close to Nafion 117 at room temperature. And especially, the values of SPEEKCN40 and its composite membranes are higher than Nafion 117 at 80 °C (0.17 S cm−1 of Nafion, 0.26 S cm−1 of SPEEKCN40, 0.20 S cm−1 of SPEEKCN40-1, and 0.18 S cm−1 of SPEEKCN40-2). Moreover, the methanol permeability is one order magnitude lower than that of Nafion 117. All the data prove that both copolymers and their composite membranes may be potential proton exchange membrane for fuel cells applications.  相似文献   

7.
Methanol crossover through polymer electrolyte membranes represents one of the major problems to be solved in order to improve direct methanol fuel cell (DMFC) performance. With this aim, Nafion/zirconium phosphate (ZrP) composite membranes, with ZrP loading in the range 1-6 wt%, were prepared by casting from mixtures of gels of exfoliated ZrP and Nafion 1100 dispersions in dimethylformamide. These membranes were characterised by methanol permeability, swelling and proton conductivity measurements, as well as by tests in active and passive DMFCs in the temperature range 30-80 °C. Increase in filler loading results in a decrease in both methanol permeability and proton conductivity. As a consequence of the reduced conductivity the power density of active DMFCs decreases with increasing ZrP loading (from 46 to 32 mW cm−2 at 80 °C). However, due to the lower methanol permeability, the room temperature Faraday efficiency of passive DMFCs, with 20 mA cm−2 discharge current, nearly doubles when Nafion 1100 is replaced by the composite membrane containing 4 wt% ZrP.  相似文献   

8.
Sulfonated poly(arylene ether ketone) bearing carboxyl groups (SPAEK-C) membranes were first modified by alternating deposition of oppositely charged polyaniline (PANI) and phosphotungstic acid (PWA) via the layer-by-layer method in order to prevent the crossover of methanol in a direct methanol fuel cell. The methanol permeability of SPAEK-C–(PANI/PWA)5 is 2 orders of magnitude less than those of Nafion 117 and pristine SPAEK-C. Furthermore, the modified membrane shows a proton conductivity of 0.093 Scm−1 at 25 °C and 0.24 Scm−1 at 80 °C, which are superior to those of Nafion 117 and pristine SPAEK-C. Fourier transform infrared spectroscopy confirms that PANI and PWA are assembled in the multilayers. The SEM images show the presence of thin PANI/PWA layers coated on the SPAEK-C membrane. Thermal stability, water uptake, water swelling, proton and electron conductivity at different temperature of the SPAEK-C and SPAEK-C-(PANI/PWA)n membranes are also investigated.  相似文献   

9.
Proton-conducting composite membranes based on H+-form sulfated β-cyclodextrin (sb-CD) in a Nafion matrix are prepared via the solution-casting method and their methanol permeabilities, proton conductivities, proton diffusion coefficients and cell performances are measured. The methanol permeabilities of the composite membranes increase very slightly with increases in their sb-CD content. As a result of adding sb-CD with its many sulfonic acid groups into the Nafion matrix, the proton conductivities of the composite membranes increase with increases in their sb-CD content. The methanol permeability and proton conductivity results are used to show that the best selectivity of the membranes is that of the NC5 membrane (‘NCx’ denotes a Nafion/sb-CD composite membrane containing x wt.% sb-CD). The proton diffusion coefficients are measured with 1H pulsed field gradient nuclear magnetic resonance (PFG-NMR) and found to increase with increase in the sb-CD content in the order NC5 > NC3 > NC1 > NC0. Thus the presence of sb-CD in the Nafion membranes increases the proton diffusion coefficients as well as the proton conductivities, ionic cluster size, water uptakes and the ion-exchange capacities (IECs). A maximum power density of 58 mW cm−2 is obtained for the NC5 membrane. The combination of these effects should lead to an improvement in the performance of direct methanol fuel cells prepared with Nafion/sb-CD composite membranes.  相似文献   

10.
Chitosan (Chs) flakes were prepared from chitin materials that were extracted from the exoskeleton of Cape rock lobsters in South Africa. The Chs flakes were prepared into membranes and the Chs membranes were modified by cross-linking with H2SO4. The cross-linked Chs membranes were characterized for the application in direct methanol fuel cells. The Chs membrane characteristics such as water uptake, thermal stability, proton resistance and methanol permeability were compared to that of high performance conventional Nafion 117 membranes. Under the temperature range studied 20-60 °C, the membrane water uptake for Chs was found to be higher than that of Nafion. Thermal analysis revealed that Chs membranes could withstand temperature as high as 230 °C whereas Nafion 117 membranes were stable to 320 °C under nitrogen. Nafion 117 membranes were found to exhibit high proton resistance of 284 s cm−1 than Chs membranes of 204 s cm−1. The proton fluxes across the membranes were 2.73 mol cm−2 s−1 for Chs- and 1.12 mol cm−2 s−1 Nafion membranes. Methanol (MeOH) permeability through Chs membrane was less, 1.4 × 10−6 cm2 s−1 for Chs membranes and 3.9 × 10−6 cm2 s−1 for Nafion 117 membranes at 20 °C. Chs and Nafion membranes were fabricated into membrane electrode assemblies (MAE) and their performances measure in a free-breathing commercial single cell DMFC. The Nafion membranes showed a better performance as the power density determined for Nafion membranes of 0.0075 W cm−2 was 2.7 times higher than in the case of Chs MEA.  相似文献   

11.
Novel cross-linked composite membranes were synthesized to investigate their applicability in anion exchange membrane fuel cells. These membranes consist of quaternized poly(vinyl alcohol) (QAPVA) and quaternized chitosan (2-hydroxypropyltrimethyl ammonium chloride chitosan, HACC) with glutaraldehyde as the cross-linking reagent. The membranes were characterized in term of their water content, ion exchange capacity (IEC), ion conductivity and methanol permeability. FTIR, X-ray diffraction and scanning electron microscopy (SEM) were also used to investigate the relation between the structure and performance of the composite membranes. The composite membranes have a high conductivity (10−3 to 10−2 S cm−1), and a low methanol permeability (from 5.68 × 10−7 to 4.42 × 10−6 cm2 s−1) at 30 °C. After reviewing all pertinent characteristics of the membranes, we find that the membrane structure is the principal factor affecting the conductivity and methanol permeability of these membranes.  相似文献   

12.
The low cost proton exchange membrane was prepared by cross-linking water soluble sulfonated-sulfinated poly(oxa-p-phenylene-3,3-phthalido-p-phenylene-oxa-p-phenylene-oxy-phenylene) (SsPEEK-WC). The prepared cross-linked membrane became insoluble in water, and exhibited high proton conductivity, 2.9 × 10−2 S/cm at room temperature. The proton conductivity was comparable with that of Nafion® 117 membrane (6.2 × 10−2 S/cm). The methanol permeability of the cross-linked membrane was 1.6 × 10−7 cm2/s, much lower than that of Nafion® 117 membrane.  相似文献   

13.
A series of semi-interpenetrating network (SIPN) membranes was synthesized by using poly(vinyl alcohol) (PVA) with sulfosuccinic acid (SSA) as a cross-linking agent and poly(styrene sulfonic acid-co-maleic acid) (PSSA-MA) as a proton source for direct methanol fuel cell (DMFC) application. A bridge of SSA between PVA molecules not only reinforced the network but also provided extra proton-conducting paths. PSSA-MA chains trapped in the network were the major proton conduction path of the membrane. The SIPN membranes with 80% PSSA-MA (SIPN-80) exhibited a higher proton conductivity value of 2.59 × 10−2 S cm−1 and very low methanol permeability (4.1 × 10−7 cm2 s−1). More specifically, the SIPN membranes exhibited very high selectivity (proton conductivity/methanol permeability). Membrane characteristics such as water uptake, proton conductivity and methanol permeability were evaluated to determine the effect of PVA molecular weights. The SIPN membranes with higher PVA molecular weight were also evaluated using methanol and oxygen gas in a single cell fuel cell at various temperatures. Power density value of over 100 mW cm−2 was obtained for SIPN membrane-based membrane electrode assembly at 80 °C and using commercial binary alloy anode catalysts and 2 M methanol.  相似文献   

14.
A new and facile approach has been developed for the preparation of cross-linked sulfonated poly(sulfide sulfone) (SPSSF) membranes. The cross-linking reaction was performed by immersing the SPSSF membranes into polyphosphoric acid at 180 °C for 1.5 h and the cross-linking bond was the very stable sulfonyl group. Cross-linking significantly improved the membrane performance, i.e., the cross-linked membranes showed better mechanical properties, lower water uptake and lower methanol permeability than the corresponding uncross-linked ones, while reasonably high proton conductivity was maintained. For example, for the membrane containing 40 mol% sulfonated moiety, by cross-linking the tensile strength increased from 39 MPa (dry) or 21 MPa (wet) to 44 MPa (dry) or 30 MPa (wet) and the elongation at break from 17% (dry) or 18% (wet) to 65% (dry) or 21% (wet), while the water uptake was reduced from 74 to 38 wt% and the methanol permeability from 7.0 × 10−7 to 1.6 × 10−7 cm2 s−1 (30 °C). The proton conductivity, however, did not decrease too much (from 0.076 to 0.043 S cm−1 in water at 30 °C).  相似文献   

15.
A series of novel side-chain-type sulfonated poly(arylene ether ketone)s with pendant carboxylic acid groups copolymers (C-SPAEKs) were synthesized by direct copolymerization of sodium 5,5′-carbonyl-bis(2-fluorobenzenesulfonate), 4,4′-difluorobenzophenone and 4,4′-bis(4-hydroxyphenyl) valeric acid (DPA). The expected structure of the sulfonated copolymers was confirmed by FT-IR and 1H NMR. Membranes with good thermal and mechanical stability could be obtained by solvent cast process. It should be noted that the proton conductivity of these copolymers with high sulfonatation degree (DS > 0.6) was higher than 0.03 S cm−1 and increased with increasing temperature. At 80 °C, the conductivity of C-SPAEK-3 (DS = 0.6) and C-SPAEK-4 (DS = 0.8) reached up to 0.12 and 0.16 S cm−1, respectively, which were higher than that of Nafion 117 (0.10 S cm−1). Moreover, their methanol permeability was much lower than that of Nafion 117. These results showed that the synthesized materials might have potential applications as the proton exchange membranes for DMFCs.  相似文献   

16.
To prepare a cross-linked hybrid proton exchange membrane with high mechanical and oxidative stability, a silane monomer, namely 3-glycidoxypropyltrimethoxysilane (KH-560), is first grafted to sulfonated poly(arylene ether ether ketone)s bearing carboxyl groups (SPAEK-C) and hydrolysis-condensation is then performed on the grafted membranes to make them cross-link. 1H NMR measurements and Fourier transform infrared spectroscopy are used to characterize and confirm the structures of SPAEK-Cs and hybrid polymer electrolyte membranes, respectively. The Si-O-Si cross-linking structure enhances the stability of the PEM greatly. The proton conductivities of the hybrid membranes with 5% KH-560 in weight reach 0.155 S cm−1 at 80 °C which is comparable to that of Nafion® membranes. The ion-exchange capacity, water uptake and swelling, methanol permeability, mechanical properties are investigated to confirm their applicability in fuel cells.  相似文献   

17.
Poly (vinyl alcohol) was sulfonated and subsequently cross-linked by a thermal curing reaction with dual cross-linkers to prepare membranes for direct methanol fuel cells. Sulfonated poly (vinyl) alcohol (SPVA) with a high degree of sulfonation was synthesized from 4-Formylbenzene-1,3-disulfonic acid disodium salt hydrate via an acetalization reaction with PVA. Various masses of the cross-linking agents 1,3-bis(3-glycidyloxypropyl) tetramethyldisiloxane and 4,4′-oxydiphthalic anhydride were polymerized with SPVA to facilitate manipulation of the properties of the membranes. Notably, the SPVA3 showed excellent proton conductivity (cf. σ  = 0.218 S cm−1 at 70 °C and Nafion 117 = 0.127 S cm−1), and low methanol permeability (around one half of that Nafion 117). These results suggest that the cross-linked SPVA membranes hold promise as potential proton exchange membranes and given their high proton conductivity and low methanol permeability they may offer advantages when used in direct methanol fuel cells (DMFCs) applications.  相似文献   

18.
The paper is concerned with the formation of Layer-by-Layer (LbL) self-assembly of highly charged polyvinyl sulfate potassium salt (PVS) and polyallylamine hydrochloride (PAH) on Nafion membrane to obtain the multilayered composite membranes with both high proton conductivity and methanol blocking properties. Also, the influences of the salt addition to the polyelectrolyte solutions on membrane selectivity (proton conductivity/methanol permeability) are discussed in terms of controlled layer thickness and charge density.The deposition of the self-assembly of PAH/PVS is confirmed by SEM analysis and it is observed that the polyelectrolyte layers growth on each side of Nafion membrane regularly. (PAH/PVS)10-Na+ and (PAH/PVS)10-H+ with 1.0 M NaCl provide 55.1 and 43.0% reduction in lower methanol permittivity in comparison to pristine Nafion, respectively, while the proton conductivities are 12.4 and 78.3 mS cm−1. Promisingly, it is found that the membrane selectivity values (Φ) of all multilayered composite membranes in H+ form are much higher than those of Na+ form and perfluorosulfonated ionomers reported in the literature. These encouraging results indicate that composite membranes having both superior proton conductivity and improved methanol barrier properties can be prepared from highly charged polyelectrolytes including salt for fuel cell applications.  相似文献   

19.
Sulfonated poly(ether ether ketone) containing hydroxyl groups (SPEEK-OH) has been prepared for use as a proton exchange membrane (PEM) by reducing the carbonyl groups on the main chain of the polymers. With the goal of reducing water uptake and methanol permeability, a facile thermal-cross-linking process is used to obtain the cross-linked membranes. The properties of the cross-linked membranes with different cross-linked density are measured and compared with the pristine membrane. Notably, SPEEK-4 with the highest cross-linked density shows a water uptake of 39% and a methanol permeability of 2.52 × 10−7 cm2 s−1, which are much lower than those of the pristine membrane (63.2% and 5.37 × 10−7 cm2 s−1, respectively). These results indicate that this simple approach is very effective to prepare cross-linked proton exchange membranes for reducing water uptake and methanol permeability.  相似文献   

20.
Poly(styrene sulfonic acid)/poly(vinyl alcohol) proton-conducting membranes with semi-interpenetrating networks (semi-IPNs) were prepared using a modified two-step crosslinking strategy. We previously employed sulfosuccinic acid (SSA) and glutaraldehyde (GA) as crosslinking agents to form a dense hydrophobic layer at the outer membrane surface. Although the proton conductivity of the resulting membrane increased with the content of SSA, the methanol permeability also increased. In this study it was found that the introduction of a sufonating agent, with a high molecular weight, i.e. poly(styrene sulfonic acid) (PSSA), at a PSSA/poly(vinyl alcohol) (g g−1) ratio greater than 0.72, increased the density of the tangled IPN structures that effectively impede the membrane's permeability to MeOH, while enhancing its proton conductivity. The synthesized semi-IPN membranes exhibited high proton conductivities (up to 5.88 × 10−2 S cm−1 at room temperature, i.e. greater than those of Nafion membranes) and high resistances to MeOH permeation (ca. 1 × 10−7 cm2 S−1, that is approximately one order of magnitude lower than that of Nafion membranes).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号