首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel strategy in which the benzimidazole group and sulfonic group are simultaneously attached to an aromatic polymer has been reported in this paper. For this purpose, sulfonated poly(arylene ether ketone) copolymers containing carboxylic acid groups (SPAEK-x-COOH, x refers to the molar percentage of sulfonated repeating units) are prepared by the aromatic nucleophilic polycondensation of sodium 5,5′-carbonyl-bis(2-fluobenzene-sulfonate) (SDFBP), 4,4′-difluorobenzophenone (DFBP) and phenolphthalin (PPL). Then the carboxylic acid groups attached to the SPAEK-x-COOH are transformed to benzimidazole units through condensation reactions (referred to as SPAEK-x-BI). Fourier transform infrared spectroscopy and 1H NMR measurements are used to characterize and confirm the structures of these copolymers. SPAEK-x-COOH membranes exhibit superior mechanical properties with maximum elongations at break up to 133%, meanwhile SPAEK-x-BI also shows good thermal and mechanical stability. The proton conductivity, swelling ratio and methanol permeability of the polymers with benzimidazole are lower than those with carboxylic groups, which indicated that there is an acid-base complex between benzimidazole and sulfonic acid groups. A balance of proton conductivity, methanol permeability, thermal and mechanical stabilities can be designed by incorporation of functional groups to meet the requirements for the applications in direct methanol fuel cells.  相似文献   

2.
To prepare a cross-linked proton exchange membrane with low methanol permeability and high proton conductivity, poly (vinyl alcohol) is first blended with sulfonated poly (arylene ether ketone) bearing carboxylic acid groups (SPAEK-C) and then heated to induce a cross-linking reaction between the carboxyl groups in SPAEK-C and the hydroxyl groups in PVA. Fourier transform infrared spectroscopy is used to characterize and confirm the structure of SPAEK-C and the cross-linked membranes. The proton conductivity of the cross-linked membrane with 15% PVA in weight reaches up to 0.18 S cm−1 at 80 °C (100% relative humidity), which is higher than that of Nafion membrane, while the methanol permeability is nearly five times lower than Nafion. The ion-exchange capacity, water uptake and thermal stability are investigated to confirm their applicability in fuel cells.  相似文献   

3.
Sulfonated poly(ether ether ketone) containing hydroxyl groups (SPEEK-OH) has been prepared for use as a proton exchange membrane (PEM) by reducing the carbonyl groups on the main chain of the polymers. With the goal of reducing water uptake and methanol permeability, a facile thermal-cross-linking process is used to obtain the cross-linked membranes. The properties of the cross-linked membranes with different cross-linked density are measured and compared with the pristine membrane. Notably, SPEEK-4 with the highest cross-linked density shows a water uptake of 39% and a methanol permeability of 2.52 × 10−7 cm2 s−1, which are much lower than those of the pristine membrane (63.2% and 5.37 × 10−7 cm2 s−1, respectively). These results indicate that this simple approach is very effective to prepare cross-linked proton exchange membranes for reducing water uptake and methanol permeability.  相似文献   

4.
During the past decade proton exchange membrane fuel cells (PEMFCs) as one kind of the potential clean energy sources for electric vehicles and portable electronic devices are attracting more and more attentions. Although Nafion® membranes are considered as the benchmark of proton exchange membranes (PEMs), the drawbacks of Nafion® membranes restrict the commercialization in the practical application of PEMFCs. As of today, the attention is to focus on developing both high-performance and low-cost PEMs to replace Nafion® membranes. In all of these PEMs, sulfonated poly(arylene ether ketone)s (SPAEKs) and sulfonated poly(arylene ether sulfone)s (SPAESs) are the most promising candidates due to their excellent performance and low price. In this review, the efforts of SPAEK and SPAES membranes are classified and introduced according to the chemical compositions, the microstructures and configurations, as well as the composites with polymers and/or inorganic fillers. Specifically, several perspectives related to the modification and composition of SPAESs and SPAEKs are proposed, aiming to provide the development progress and the promising research directions in this field.  相似文献   

5.
A series of sulfonated poly(arylene ether ketone sulfone)s polymer having a degree of sulfonation of 80% and a carboxyl group in the side chain (C-SPAEKS) were prepared by polycondensation. The 4-aminopyridine grafted sulfonated poly(arylene ether ketone sulfone)s polymer membranes (SPPs) were prepared by amidation reaction with the carboxyl group to immobilize 4-aminopyridine on the side chain. The 1H NMR results and Fourier transform infrared of SPP membranes demonstrated the successful grafting of the 4-aminopyridine. Proton conductivity, water absorption, swelling ratio, and thermal stability of different proportions of SPP membranes were investigated under the different conditions. With the increase of pyridine grafting content, the methanol permeability coefficient of the membrane decreased significantly from 8.17 × 10−7 cm2s−1 to 8.92 × 10−8 cm2s−1 at 25 °C. And, the proton conductivity and relative selectivity of the membrane were positively correlated with the grafted pyridine content. Among them, the SPP-4 membrane exhibited the highest proton conductivity of 0.088 Scm−1 at 100 °C. The relative selectivity increased from 4.73 × 104 S scm−3 to 9.84 × 104 S scm−3.  相似文献   

6.
A series of crosslinkable sulfonated poly(arylene ether ketone)s (SPAEKs) were synthesized by copolymerization of 4,4′-biphenol with 2,6-difluorobenzil and 5,5′-carbonyl-bis(2-fluorobenzene-sulfonate). A facile crosslinking method was successfully developed, based on the cyclocondensation reaction of benzil moieties in polymer chain with 3,3′-diaminobenzidine to form quinoxaline groups acting as covalent and acid-base ionic crosslinking. The uncrosslinked and crosslinked SPAEK membranes showed high mechanical properties and the isotropic membrane swelling, while the later became insoluble in tested polar aprotic solvents. The crosslinking significantly improved the membrane performance, i.e., the crosslinked membranes had the lower membrane dimensional change, lower methanol permeability and higher oxidative stability than the corresponding precursor membranes, with keeping the reasonably high proton conductivity. The crosslinked membrane (C-B4) with an ion exchange capacity of 2.02 mequiv. g−1 showed a reasonably high proton conductivity of 111 mS cm−1 with a low water uptake of 42 wt% at 80 °C. C-B4 exhibited a low methanol permeability of 0.55 × 10−6 cm2 s−1 for 32 wt% methanol solution at 25 °C. The crosslinked SPAEK membranes have potential for PEFC and DMFC applications.  相似文献   

7.
Sulfonated organosilane functionalized graphene oxides (SSi-GO) synthesized through the grafting of graphene oxide (GO) with 3-mercaptopropyl trimethoxysilane and subsequent oxidation have been used as a filler in sulfonated poly(ether ether ketone) (SPEEK) membranes. The incorporation of SSi-GOs greatly increases the ion-exchange capacity (IEC), water uptake, and proton conductivity of the membrane. With well-controlled contents of SSi-GOs, the composite membranes exhibit higher proton conductivity and lower methanol permeability than Nafion® 112 and Nafion® 115, making them particularly attractive as proton exchange membranes (PEMs) for direct methanol fuel cells (DMFC). The composite membrane with optimal SSi-GOs content exhibit over 38 and 17% higher power densities, respectively, than Nafion® 112 and Nafion® 115 membranes in DMFCs, offering the possibilities to reduce the DMFC membrane cost significantly while keeping high-performance.  相似文献   

8.
Sulfonated poly(arylene ether ketone) bearing carboxyl groups (SPAEK-C) membranes were first modified by alternating deposition of oppositely charged polyaniline (PANI) and phosphotungstic acid (PWA) via the layer-by-layer method in order to prevent the crossover of methanol in a direct methanol fuel cell. The methanol permeability of SPAEK-C–(PANI/PWA)5 is 2 orders of magnitude less than those of Nafion 117 and pristine SPAEK-C. Furthermore, the modified membrane shows a proton conductivity of 0.093 Scm−1 at 25 °C and 0.24 Scm−1 at 80 °C, which are superior to those of Nafion 117 and pristine SPAEK-C. Fourier transform infrared spectroscopy confirms that PANI and PWA are assembled in the multilayers. The SEM images show the presence of thin PANI/PWA layers coated on the SPAEK-C membrane. Thermal stability, water uptake, water swelling, proton and electron conductivity at different temperature of the SPAEK-C and SPAEK-C-(PANI/PWA)n membranes are also investigated.  相似文献   

9.
A series of cross-linked membranes based on SPEEK/Nafion have been prepared to improve methanol resistance and dimension stability of SPEEK membrane for the usage in the direct methanol fuel cells (DMFCs). Sulfonated diamine monomer is synthesized and used as cross-linker to improve the dispersion of Nafion in the composite membranes and decrease the negative effect of cross-linking on proton conductivity of membranes. FT-IR analysis shows that the cross-linking reaction is performed successfully. The effects of different contents of Nafion on the properties of cross-linked membranes are investigated in detail. All the cross-linked membranes show lower methanol permeability and better dimensional stability compared with the pristine SPEEK membrane. SPEEK-N30 with the 30 wt % Nafion shows a methanol permeability of 0.73 × 10−6 cm2 s−1 and a water uptake of 24.4% at 25 °C, which are lower than those of the pristine membrane. Meanwhile, the proton conductivity of SPEEK-N30 still remains at 0.041 S cm−1 at 25 °C, which is comparable to that of the pristine SPEEK membrane. All the results indicate that these cross-linked membranes based on SPEEK/Nafion show good prospect for the use as proton exchange membranes.  相似文献   

10.
A series of sulfonated poly(arylene ether ketone ketone sulfone) (SPAEKKS) copolymers were synthesized by nucleophilic polycondensation. The copolymers exhibit good thermal and oxidative stabilities, all the SPAEKKS copolymers can be cast into tough membranes. Ionic exchange capacities (IEC), water uptake properties, thermal stabilities, methanol diffusion coefficients and proton conductivities were thoroughly studied. Also the microstructures of the membranes were investigated by TEM. The proton conductivity of the SPAEKKS-4 membrane is close to that of Nafion-117 at 80 °C. The methanol diffusion coefficient of the membrane is much lower than that of Nafion-117 under the same testing conditions. The SPAEKKS membranes are promising in proton exchange membranes fuel cell (PEMFC) application.  相似文献   

11.
Sulfonated poly(ether ether ketone)s (SPEEKs) are substituted on the main chain of the polymer by nitro groups and blended with Nafion® to attain composite membranes. The sulfonation, nitration and blending are achieved with a simple, inexpensive process, and the blended membranes containing the nitrated SPEEKs reveal a liquid-liquid phase separation. The blended membranes have a lower water uptake compared to recast Nafion®, and the methanol permeability is reduced significantly to 4.29 × 10−7-5.34 × 10−7 cm2 s−1 for various contents of nitrated SPEEK for S63N17, and 4.72 × 10−7-7.11 × 10−7 cm2 s−1 for S63N38, with a maximum proton conductivity of ∼0.085 S cm−1. This study examines the single-cell performance at 80 °C of Nafion®/nitrated SPEEK membranes with various contents of nitrated SPEEK and a degree of nitration of 23-25 mW cm−2 for S63N17 and 24-29 mW cm−2 for S63N38. Both the power density and open circuit voltage are higher than those of Nafion® 115 and recast Nafion®.  相似文献   

12.
In the present study, the self-humidifying nanocomposite membranes based on sPEEK and Cs2.5H0.5PW12O40 supported Pt catalyst (Pt-Cs2.5H0.5PW12O40 catalyst or Pt-Cs2.5) and their performance in proton exchange membrane fuel cells with dry reactants has been investigated. The XRD, FTIR, SEM-EDXA and TEM analysis were conducted to characterize the catalyst and membrane structure. The ion exchange capacity (IEC), water uptake and proton conductivity measurements indicated that the sPEEK/Pt-Cs2.5 self-humidifying nanocomposite membranes have higher water absorption, acid and proton-conductive properties compared to the plain sPEEK membrane and Nafion-117 membrane due to the highly hygroscopic and acidy properties of Pt-Cs2.5 catalyst. The single cells employing the sPEEK/Pt-Cs2.5 self-humidifying nanocomposite membranes exhibited higher cell OCV values and cell performances than those of plain sPEEK membrane and Nafion-117 membrane under dry or wet conditions. Furthermore, the sPEEK/Pt-Cs2.5 self-humidifying nanocomposite membranes showed good water stability in aqueous medium. After investigation of several membranes such as sPEEK and sPEEK/Pt-Cs2.5 membranes, the self-humidifying nanocomposite membrane with sulfonation degree of 65.12% for its sPEEK and 15 wt.% of catalyst with 1.25 wt.% Pt within catalyst was found to be the best proton exchange membrane for fuel cell applications. This self-humidifying nanocomposite membrane has a higher single cell performance than the Nafion-117 which was frequently used as a proton exchange membrane for fuel cell applications.  相似文献   

13.
In this work, the organic-inorganic hybrid membranes were prepared. The synthesis and properties of the hybrid membranes were investigated. The sulfonated poly(arylene ether ketone sulfone) containing amino groups (Am-SPAEKS) was synthesized by nucleophilic polycondensation. The sol-gel method was used to prepared functional titania inorganic particles (L-TiO2). The 1H NMR and FT-IR were performed to verified the structure of Am-SPAEKS and L-TiO2. The organic-inorganic hybrid membranes showed both good thermal stabilities and mechanical properties than that of Am-SPAEKS. The L-Am-15% membrane exhibited the highest Young's modulus (2262.71 MPa) and Yield stress (62.09 MPa). The distribution of L-TiO2 particles was revealed by SEM. Compared to Am-SPAEKS, the hybrid membranes showed higher proton conductivities. The L-Am-15% exhibited the highest proton conductivity of 0.0879 S cm−1 at 90 °C. The results indicate that the organic-inorganic hybrid membranes have potential for application in proton exchange membrane fuel cells.  相似文献   

14.
The surface of sulfonated poly(arylene ether ketone) bearing carboxyl groups (SPAEK-C) was modified by alternating deposition of oppositely charged polypyrrole (PPY) and phosphotungstic acid (PWA) via the layer-by-layer (LBL) method in order to prevent the crossover of methanol in the direct methanol fuel cell (DMFC). FT-IR confirms that PPY and PWA are assembled in the multilayers successfully. The morphology of the membranes studied in detail by SEM shows the presence and stability of thin PPY/PWA layers coated on SPAEK-C membranes. Methanol permeability was determined and was shown to be effectively reduced. The selectivity of SPAEK-C-(PPY/PWA)n is 1 order more than Nafion® 117, which is attractive in DMFCs. Thermal stability, water uptake, water swelling and proton conductivity of the SPAEK-C and SPAEK-C-(PPY/PWA)n membranes were also investigated.  相似文献   

15.
The development of hydrocarbon polymer electrolyte membranes with high proton conductivities and good stability as alternatives to perfluorosulfonic acid membranes is an ongoing research effort. A facile and effective thermal crosslinking method was carried out on the blended sulfonated poly (ether ether ketone)/poly (aryl ether sulfone) (SPEEK/SPAES) system. Two SPEEK polymers with ion exchange capacities (IECs) of 1.6 and 2.0 mmol g?1 and one SPAES polymer (2.0 mmol g?1) were selected to create different blends. The effect of thermal crosslinking on the fundamental properties of the membranes, especially their physicochemical stability and electrochemical performance, were investigated in detail. The homogeneous and flexible thermally-crosslinked SPEEK/SPAES membranes displayed excellent mechanical toughness (27–46 Mpa), suitable water uptake (<60%), high dimensional stability (swelling ratio < 15%) and large proton conductivity (>120 mS cm?1) at 80 °C. The thermal crosslinking membranes also show significantly enhanced hydrolytic (<2.5%) and oxidative stability (<2%). Fuel cell with t-SPEEK/SPAES (1:2:2) membrane achieves a power density of 665 mW cm?2 at 80 °C.  相似文献   

16.
A reinforced composite membrane based on SPEEK (sulfonated poly ether ether ketone) and porous PTFE substrate (polytetrafluoroethylene) is fabricated and investigated for proton exchange membrane fuel cell application. In order to improve the combination between SPEEK polymer and PTFE matrix, PTFE substrate is hydrophilically pretreated by naphthalene sodium solution. The experimental results indicate that SPEEK can impregnate into treated PTFE substrate (abbreviated as trPTFE) more easily. The variation of PTFE surface property before and after treatment is characterized by water contact angle experiment and ATR-FTIR technique. The impregnated status of SPEEK polymer in PTFE matrix is also characterized by ATR-FTIR. According to the appearance photo of two composite membranes, it is showed that SPEEK/trPTFE composite membrane has more uniform and homogeneous morphology. Moreover, the mechanical property of SPEEK/trPTFE composite membrane also has an advantage over pristine SPEEK membrane. Due to the reinforced effect of trPTFE substrate, thinner composite membrane can be applied in single cell evolution and achieves better performance as a result.  相似文献   

17.
A series of sulfonated poly(arylene ether sulfone) with photocrosslinkable moieties is successfully synthesized by direct copolymerization of 3,3′-disulfonated 4,4′-difluorodiphenyl sulfone (SDFDPS) and 4,4′-difluorodiphenyl sulfone (DFDPS) with 4,4′-biphenol (BP) and 1,3-bis-(4-hydroxyphenyl) propenone (BHPP). The content of crosslinkable moieties in the polymer repeat unit is controlled from 0 to 10 mol% by changing the monomer feed ratio of BHPP to BP. The polymer membranes can be crosslinked by irradiating UV with a wavelength of 365 nm. From FT-IR analysis, it can be identified that UV crosslinking mainly occurs due to the combination reaction of radicals that occurs in conjunction with the breaking of the carbon–carbon double bonds (–CH = CH-) of the chalcone moieties in the backbone. Consequently, a new bond is created to form cyclobutane. The crosslinked membranes show less water uptake, a lower level of methanol permeability, and good thermal and mechanical properties compared to pristine (non-crosslinked) membranes while maintaining a reasonable level of proton conductivity. Finally, the fuel cell performance of the crosslinked membranes is comparable to that of the Nafion 115 membrane, demonstrating that these membranes are promising candidates for use as polymer electrolyte membranes in DMFCs.  相似文献   

18.
In the present study, a series of the crosslinked sulfonated poly(ether ether ketone) (SPEEK) proton exchange membranes were prepared. The photochemical crosslinking of the SPEEK membranes was carried out by dissolving benzophenone and triethylamine photo-initiator system in the membrane casting solution and then exposing the resulting membranes after solvent evaporation to UV light. The physical and transport properties of crosslinked membranes were investigated. The membrane performance can be controlled by adjusting the photoirradiation time. The experimental results showed that the crosslinked SPEEK membranes with photoirradiation 10 min had the optimum performance for proton exchange membranes (PEMs). Compared with the non-crosslinked SPEEK membranes, the crosslinked SPEEK membranes with photoirradiation 10 min markedly improved thermal stabilities and mechanical properties as well as hydrolytic and oxidative stabilities, greatly reduced water uptake and methanol diffusion coefficients with only slight sacrifice in proton conductivities. Therefore, the crosslinked SPEEK membranes with photoirradiation 10 min were particularly promising as proton exchange membranes for direct methanol fuel cell (DMFC) applications.  相似文献   

19.
The proton exchange membrane (PEM) was synthesized using polyethersulfone (PES), sulfonated poly (ether ether ketone) (SPEEK) and nanoparticles. The metal oxide nanoparticles such as Fe3O4, TiO2 and MoO3 were added individually to the polymer blend (PES and SPEEK). The polymer composite membranes exhibit excellent features regarding water uptake, ion exchange capacity and proton conductivity than the pristine PES membrane. Since the presence of sulfonic acid groups provides by added SPEEK and the unique properties of inorganic nanoparticles (Fe3O4, TiO2 and MoO3) helps to interconnect the ionic domain by the absorption of more water molecules thereby enhance the conductivity value. The proton conductivity of PES, SPEEK, PES/SPEEK/Fe3O4, PES/SPEEK/TiO2 and PES/SPEEK/MoO3 membranes were 0.22 × 10?4 S/cm, 5.18 × 10?4 S/cm, 3.57 × 10?4 S/cm, 4.57 × 10?4 S/cm and 2.67 × 10?4 S/cm respectively. Even though the blending of PES with SPEEK has reduced the conductivity value to a lesser extent, hydrophobic PES has vital role in reducing the solvent uptake, swelling ratio and improves hydrolytic stability. Glass transition temperature (Tg) of the membranes were determined from DSC thermogram and it satisfies the operating condition of fuel cell system which guarantees the thermal stability of the membrane for fuel cell application.  相似文献   

20.
Crosslinked organic-inorganic hybrid membranes are prepared from hydroxyl-functionalized sulfonated poly(ether ether ketone) (SPEEK) and various amounts of silica with the aims to improve dimensional stability and methanol resistance. The partially hydroxyl-functionalized SPEEK is prepared by the reduction of some benzophenone moieties of SPEEK into the corresponding benzhydrol moieties which is then reacted with (3-isocyanatopropyl)triethoxysilane (ICPTES) to get a side chained polymer bearing triethoxysilyl groups. These groups are subsequently co-hydrolyzed with tetraethoxysilane (TEOS) and allow the membrane to form a crosslinked network via a sol-gel process. The obtained hybrid membranes with covalent bonds between organic and inorganic phases exhibit much lower methanol swelling ratio and water uptake. With the increase of silica content, the methanol permeability coefficient of the hybrid membranes decreases at first and then increased. At silica content of about 6 wt.%, the methanol permeability coefficient reaches a minimum of 7.15 × 10−7 cm2 s−1, a 5-fold decrease compared with that of the pristine SPEEK. Despite the fact that the proton conductivity is decreased to some extent as a result of introduction of the silica, the hybrid membranes with silica content of 4-8 wt.% shows higher selectivity than Nafion117.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号