首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
This research proposes a model that predicts the effect of the anode diffusion layer and membrane properties on the electrochemical performance and methanol crossover of a direct methanol fuel cell (DMFC) membrane electrode assembly (MEA). It is an easily extensible, lumped DMFC model. Parameters used in this design model are experimentally obtainable, and some of the parameters are indicative of material characteristics. The quantification of these material parameters builds up a material database. Model parameters for various membranes and diffusion layers are determined by using various techniques such as polarization, mass balance, electrochemical impedance spectroscopy (EIS), and interpretation of the response of the cell to step changes in current. Since the investigation techniques cover different response times of the DMFC, processes in the cell such as transport, reaction and charge processes can be investigated separately. Properties of single layers of the MEA are systematically varied, and subsequent analysis enables identification of the influence of the layer's properties on the electrochemical performance and methanol crossover. Finally, a case study indicates that the use of a membrane with lower methanol diffusivity and a thicker anode micro-porous layer (MPL) yields MEAs with lower methanol crossover but similar power density.  相似文献   

2.
Mass balance research in direct methanol fuel cells (DMFCs) provides a more practical method in characterizing the mass transport phenomena in a membrane electrode assembly (MEA). This method can be used to measure methanol utilization efficiency, water transport coefficient (WTC), and methanol to electricity conversion rate of a MEA in DMFCs. First, the vital design parameters of a MEA are recognized for achieving high methanol utilization efficiency with increased power density. In particular, the structural adjustment of anode diffusion layer by adding microporous layer (MPL) is a very effective way to decrease WTC with reduced methanol crossover due to the mass transfer limitation in the anode. On the other hand, the cathode MPL in the MEA design can contribute in decreasing methanol crossover. The change of structure of cathode diffusion layer is also found to be a very effective way in improving power density. In contrast, the WTC of DMFC MEAs remains virtually constant in the range of 3.4 and 3.6 irrespective of the change of the cathode GDL. The influence of operating condition on the methanol utilization efficiency, WTC, and methanol to electricity conversion rate is also presented and it is found that these mass balance properties are strongly affected by temperature, current density, methanol concentration, and the stoichiometry of fuel and air.  相似文献   

3.
A novel membrane electrode assembly (MEA) is described that utilizes a double microporous layer (MPL) structure in the cathode of a passive direct methanol fuel cell (DMFC). The double MPL cathode uses Ketjen Black carbon as an inner-MPL and Vulcan XC-72R carbon as an outer-MPL. Experimental results indicate that this double MPL structure at the cathode provides not only a higher oxygen transfer rate, but enables more effective back diffusion of water; thus, leading to an improved power density and stability of the passive DMFC. The maximum power density of an MEA with a double MPL cathode was observed to be ca. 33.0 mW cm−2, which is found to be a substantial improvement over that for a passive DMFC with a conventional MEA. A. C. impedance analysis suggests that the increased performance of a DMFC with the double MPL cathode might be attributable to a decreased charge transfer resistance for the cathode oxygen reduction reaction.  相似文献   

4.
Despite serious methanol crossover issues in Direct Methanol Fuel Cells (DMFCs), the use of high-concentration methanol fuel is highly demanded to improve the energy density of passive fuel DMFC systems for portable applications. In this paper, the effects of a hydrophobic anode micro-porous layer (MPL) and cathode air humidification are experimentally studied as a function of the methanol-feed concentration. It is found in polarization tests that the anode MPL dramatically influences cell performance, positively under high-concentration methanol-feed but negatively under low-concentration methanol-feed, which indicates that methanol transport in the anode is considerably altered by the presence of the anode MPL. In addition, the experimental data show that cathode air humidification has a beneficial effect on cell performance due to the enhanced backflow of water from the cathode to the anode and the subsequent dilution of the methanol concentration in the anode catalyst layer. Using an advanced membrane electrode assembly (MEA) with the anode MPL and cathode air humidification, we report that the maximum power density of 78 mW/cm2 is achieved at a methanol-feed concentration of 8 M and cell operating temperature of 60 °C. This paper illustrates that the anode MPL and cathode air humidification are key factors to successfully operate a DMFC with high-concentration methanol fuel.  相似文献   

5.
In a direct methanol fuel cell (DMFC), optimized multilayer electrode design is critical to mitigate methanol crossover and improve cell performance. In this paper, we present a one-dimensional (1-D) two-phase model based on the saturation jump theory in order to explore the methanol and water transport characteristics using various multilayer electrode configurations. To experimentally validate the 1-D model, two different membrane electrode assemblies (MEAs) with and without an anode microporous layer (MPL) are fabricated and tested under various cell current density and methanol feed concentration conditions. Then, 1-D DMFC simulations are performed and the results compared to the experimental data. In general, the numerical predictions are in good agreement with the experimental data; thus, the 1-D DMFC simulations successfully model the effects of the anode MPL that were observed experimentally. In addition to the comparison study, additional numerical simulations are carried out to precisely examine the role of the anode and cathode MPLs and the effect of the hydrophobicity of the anode catalyst layer on the water and liquid saturation distributions inside the DMFCs. This paper demonstrates the quantitative accuracy of the saturation jump model for simulating multilayer DMFC MEAs and also provides greater insight into the operational characteristics of DMFCs incorporating multilayer electrodes.  相似文献   

6.
It is desirable to operate a direct methanol fuel cell (DMFC) with neat methanol to maximize the specific energy of the DMFC system, and hence increasing its runtime. A way to achieve the neat-methanol operation is to passively transport the water produced at the cathode through the membrane to the anode to facilitate the methanol oxidation reaction (MOR). To achieve a performance of the MOR similar to that under the conventional diluted methanol operation, both the water transport rate and the local water concentration in the anode catalyst layer (CL) are required to be sufficiently high. In this work, a thin layer consisting of nanosized SiO2 particles and Nafion ionomer (referred to as a water retention layer hereafter) is coated onto each side of the membrane. Taking advantage of the hygroscopic nature of SiO2, the cathode water retention layer can help maintain the water produced from the cathode at a higher concentration level to enhance the water transport to the anode, while the anode retention layer can retain the water that is transported from the cathode. As a result, a higher water transport rate and a higher water concentration at the anode CL can be achieved. The formed membrane electrode assembly (MEA) with the added water retention layers is tested in a passive DMFC and the results show that this MEA design yields a much higher power density than the MEA without water retention layers does.  相似文献   

7.
High performance membrane electrode assemblies (MEAs) for direct methanol fuel cells (DMFCs) are developed by changing the coating process, optimizing the structure of the catalyst layer, adding a pore forming agent to the cathode catalyst layer, and adjusting the hot-pressing conditions, such as pressure and temperature. The effects of these MEA fabrication methods on the DMFC performance are examined using a range of physicochemical and electrochemical analysis tools, such as FE-SEM, electrochemical impedance spectroscopy (EIS), polarization curves, and differential scanning calorimetry (DSC) of the membrane. EIS and polarization curve analysis show that an increase in the thickness and porosity of the cathode catalyst layer plays a key role in improving the cell performance with reduced cathode reaction resistance, whereas the MEA preparation methods have no significant effects on the anode impedance. In addition, the addition of magnesium sulfate as a pore former reduces the cathode reaction transfer resistance by approximately 30 wt%, resulting in improved cell performance.  相似文献   

8.
Electrochemical losses as a function of the micro-porous layer (MPL) arrangement in Proton Exchange Membrane Fuel Cells (PEMFCs) are investigated by electrochemical impedance spectroscopy (EIS). Net water flux across the polymer membrane in PEMFCs is investigated for various arrangements of the MPL, namely with MPL on the cathode side alone, with MPL on both the cathode and the anode sides and without MPL. EIS and water transport are recorded for various operating conditions, such as the relative humidity of the hydrogen inlet and current density, in a PEMFC fed by fully-saturated air. The cell with an MPL on the cathode side alone has better performance than two other types of cells. Furthermore, the cell with an MPL on only the cathode increases the water flux from cathode to anode as compared to the cells with MPLs on both electrodes and cells without MPL. Oxygen-mass-transport resistances of cells in the presence of an MPL on the cathode are lower than the values for the other two cells, which indicates that the molar concentration of oxygen at the reaction surface of the catalyst layer is higher. This suggests that the MPL forces the liquid water from the cathode side to the anode side and decreases the liquid saturation in GDL at high current densities. Consequently, the MPL helps in maintaining the water content in the polymer membrane and decreases the cathode charge transfer and oxygen-mass transport resistances in PEMFCs, even when the hydrogen inlet has a low relative humidity.  相似文献   

9.
An electrochemical impedance spectroscopy (EIS) technique was developed to characterize a direct methanol fuel cell (DMFC) under various operating conditions. A silver/silver chloride electrode was used as an external reference electrode to probe the anode and cathode during fuel cell operation and the results were compared to the conventional anode or cathode half-cell performance measurement using a hydrogen electrode as both the counter and reference electrode. The external reference was sensitive to the anode and the cathode as current was passed in a working DMFC. The impedance spectra and DMFC polarization curves were systematically investigated as a function of air and methanol flow rates, methanol concentration, temperature, and current density. Water flooding in the cathode was also examined.  相似文献   

10.
A membrane electrode assembly (MEA) that is a combination of a catalyst-coated membrane (CCM) for the anode and a catalyst-coated substrate (CCS) for the cathode is studied under air-blower conditions for direct methanol fuel cells (DMFCs). Compared with MEAs prepared by only the CCS method, the performance of DMFC MEAs employing the combination method is significantly improved by 30% with less methanol crossover. This feature can be attributed to an enhanced electrode|membrane interface in the anode side and significantly higher catalyst efficiency. Furthermore, DMFC MEAs designed by the combination method retain high power density without any degradation, while the CCM-type cell shows a downward tendency in electrochemical performance under air-blower conditions. This may be due to MEAs with CCM have a much more difficult structure of catalytic active sites in the cathode to eliminate the water produced by electrochemical reaction. In addition, DMFCs produced via combination methods exhibit a lower water crossover flux than CCS alternatives, due to the comparatively dense structure of the CCM anode. Hence, DMFCs with a combination MEA structure demonstrate the feasibility of a small fuel cell system employing the low noise of a fan, instead of a noisy and large capacity air pump, for portable electronic devices.  相似文献   

11.
In this study, a low-temperature decal transfer method is used to fabricate membrane electrode assemblies (MEAs) and the MEAs are tested for application in a direct methanol fuel cell (DMFC). The low-temperature decal transfer uses a carbon-layered decal substrate with a structure of ionomer/catalyst/carbon/substrate to facilitate the transfer of catalyst layers from the decal substrates to the membranes at a temperature as low as 140 °C, and also to prevent the formation of ionomer skin layer that is known to be formed on the surface of the transferred catalyst layer. The DMFC performance of the MEA (with carbon layer) fabricated by the low-temperature decal transfer method is higher than those of MEAs fabricated by the same method without a carbon layer, a conventional high-temperature decal method, and a direct spray-coating method. The improved DMFC performance of the MEA fabricated with carbon layer by the low-temperature decal transfer method can be attributed to the absence of an ionomer skin on the catalyst layer, which can streamline the diffusion of reactants. Furthermore, the intrinsic properties of the MEA fabricated by the low-temperature decal transfer method are elucidated by field-emission scanning electron microscopy (FESEM), electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) techniques, and cathode CO2 analysis.  相似文献   

12.
《Journal of power sources》2006,162(2):1232-1235
A vapor fed passive direct methanol fuel cell (DMFC) is proposed to achieve a high energy density by using pure methanol for mobile applications. Vapor is provided from a methanol reservoir to the membrane electrode assembly (MEA) through a vaporizer, barrier and buffer layer. With a composite membrane of lower methanol cross-over and diffusion layers of hydrophilic nanomaterials, the humidity of the MEA was enhanced by water back diffusion from the cathode to the anode through the membrane in these passive DMFCs. The humidity in the MEA due to water back diffusion results in the supply of water for an anodic electrochemical reaction with a low membrane resistance. The vapor fed passive DMFC with humidified MEA maintained 20–25 mW cm−2 power density for 360 h and performed with a 70% higher fuel efficiency and 1.5 times higher energy density when compared with a liquid fed passive DMFC.  相似文献   

13.
According to the conventional MEA test, methanol and water crossover are the main factors to determine performance of a passive DMFC. Thus, to ensure the high cell performance of a passive DMFC using high concentration methanol of 50–95 vol%, the MEA in this study introduces the barrier layer to limit the crossover of high concentration methanol, a hydrophobic layer to reduce water crossover, and a hydrophilic layer to enhance the water recovery from the cathode to the anode. The functional layers of the MEA have the effect of improving the performance of the passive DMFC by decreasing the methanol and water crossover. In spite of the operation with 95 vol% methanol, the MEA with multi-layer electrodes for high concentration methanol DMFCs shows a maximum power density of 35.1 mW cm−2 and maintains a high power density of 30 mW cm−2 (0.405 V) under constant current operation.  相似文献   

14.
The addition of carbon nanotubes (CNTs) into anodic micro-porous layer (MPL) of the membrane electrode assembly significantly improves the performance of the passive micro-direct methanol fuel cells (DMFCs). The maximum power density of ca. 32.2 mW cm−2 at a temperature of ca. 25 °C and under air-breathing mode is achieved with pure CNTs as anode MPL material. Impedance analysis and cyclic voltammetric measurements of the anodes indicate that the increased performance of the passive DMFC with the addition of CNTs into anodic MPLs could be attributed to the decrease in charge transfer resistance of the anode reaction and to the improvement in catalyst utilization. Scanning electron microscopy measurements show the network formation within the MPL due to the one-dimensional structure of CNTs, which could be beneficial to the methanol mass transfer and to the improvement in catalyst utilization. Furthermore, the durability test of a passive DMFC after 300 h operation demonstrates that the passive DMFC with CNTs as anode MPL materials exhibits very good stability.  相似文献   

15.
Ethanol crossover and ethanol electrooxidation kinetic effects on direct ethanol fuel cell (DEFC) performance were determined at different ethanol feed concentrations for cells fabricated with and without an anode microporous layer (MPL). Several characterization techniques were used, including cell performance curves, anode polarization, electrochemical impedance spectroscopy (EIS) and ethanol crossover by the voltammetric method. It was found that the optimum ethanol feed concentration depended on the anode structure design and the cell current density operation. A microporous layer could reduce ethanol crossover but induced high mass transfer resistance, resulting in a slow ethanol electrooxidation reaction rate. However, ethanol crossover was not the dominant factor affecting DEFC performance for the ethanol feed concentration range (0.5–5.0 M) studied. The MEA without an anode MPL exhibited better performance than the one with an MPL for the entire range of ethanol concentration.  相似文献   

16.
To investigate the effects of the microstructure and powder compositions for the micro-porous layer (MPL) of an anode on the cell performance of a direct methanol fuel cell (DMFC) using a highly concentrated methanol solution up to 7 M, various powders and their compositions were applied as a filler of the MPL in the membrane electrode assembly (MEA). Several nano- and microstructured carbons such as commercial carbon black (CB), spherical activated carbon (AC), multi-walled carbon nanotube (MWCNT), and platelet carbon nanofiber (PCNF) were selected with different morphology and surface properties, and a meso-porous silica (one of SBA series) was also included for its porous and hydrophilic properties. The coating morphology and physical properties such as porosity and gas permeability were measured, and electrochemical properties of MEA with the MPL were examined by using current–voltage polarization, electrochemical impedance spectroscopy, and voltammetric analyses. A mixture of different carbons was found to be effective for lowering methanol crossover with sustaining electrical conductivity and gas permeability. A MEA with modified-anode MPLs made of CB (50 vol%) and PCNF (50 vol%) powders showed a maximum power density of 67.7 mW cm−2 under operation with a 7 M concentration of methanol.  相似文献   

17.
The effects of membrane electrode assemblies (MEAs) fabrication methods (spraying and scraping methods) and the hot-pressing pretreatment of anode electrodes on the performance of direct methanol fuel cells (DMFCs) were investigated. The MEA prepared with scraped anode catalyst layer without the hot-pressing pretreatment showed the highest power density of 67 mW cm−2 at 80 °C and ambient pressure. The scraping method proved to be a little more profitable for improving the cell performance than the spraying method. Atomic force microscopy (AFM) analysis revealed relatively smooth surface of the scraped anode catalyst layer compared with that of sprayed anode catalyst layer. Scanning electron microscopy (SEM) images showed that a suitable number of cracks which were uniformly distributed on the surface of scraped catalyst layer formed a porous structure. It was demonstrated that the surface structure and roughness of the anode catalyst layer had less effect on the performance of the anode electrode in a DMFC. The hot-pressing pretreatment of the anode electrode decreased the performance of the MEA due to the difficulty for electrons and mass transport in the anode electrode, namely the increase of internal cell resistance.  相似文献   

18.
An air-breathing direct methanol fuel cell with a novel cathode shutter current collector is fabricated to develop the power sources for consumer electronic devices. Compared with the conventional circular cathode current collector, the shutter one improves the oxygen consumption and mass transport. The anode and cathode current collectors are made of stainless steel using thermal stamping die process. Moreover, an encapsulation method using the tailor-made clamps is designed to assemble the current collectors and MEA for distributing the stress of the edges and inside uniformly. It is observed that the maximum power density of the air-breathing DMFC operating with 1 M methanol solution achieves 19.7 mW/cm2 at room temperature. Based on the individual DMFCs, the air-breathing stack consisting of 36 DMFC units is achieved and applied to power a notebook computer.  相似文献   

19.
Alkaline-acid direct glycerol fuel cells (AA-DGFC) were fabricated and primarily proven to be used as portable power generating devices. Pt/C catalyst was used as electrocatalyst for both anode and cathode. The optimal operating condition for cathode was firstly tested. Then the effects of types of backing and microporous layer on the cell performance and stability were investigated to obtain the optimal electrode structure. The cell performance was determined by using both chronoamperometry technique at a constant voltage of 0.4 V, and cell polarization with impedance measurement. The maximum peak power density obtained from the cell was 375 mW cm−2 and the highest average current density discharged from the cell was 451 mA cm−2. Non-wetproof carbon cloth is suitable as the backing layer for both the anode and cathode. Although MPL did not directly affect the cell performance, it greatly improved stability of the current discharged during chronoamperometric test. The cathode favors hydrophilic MPL, while hydrophobic MPL was preferred on the anode.  相似文献   

20.
This paper was presented to determine the methanol crossover and efficiency of a direct methanol fuel cell (DMFC) under various operating conditions such as cell temperature, methanol concentration, methanol flow rate, cathode flow rate, and cathode backpressure. The methanol crossover measurements were performed by measuring crossover current density at an open circuit using humidified nitrogen instead of air at the cathode and applied voltage with a power supply. The membrane electrode assembly (MEA) with an active area of 5 cm2 was composed of a Nafion 117 membrane, a Pt–Ru (4 mg/cm2) anode catalyst, and a Pt (4 mg/cm2) cathode catalyst. It was shown that methanol crossover increased by increasing cell temperature, methanol concentration, methanol flow rate, cathode flow rate and decreasing cathode backpressure. Also, it was revealed that the efficiency of the DMFC was closely related with methanol crossover, and significantly improved as the cell temperature and cathode backpressure increased and methanol concentration decreased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号