首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The monoclinic-type Li3V2(PO4)3 cathode material was synthesized via calcining amorphous Li3V2(PO4)3 obtained by chemical reduction and lithiation of V2O5 using oxalic acid as reducer and lithium carbonate as lithium source in alcohol solution. The amorphous Li3V2(PO4)3 precursor was characterized by using TG–DSC and XPS. The results showed that the V5+ was reduced to V3+ by oxalic acid at ambient temperature and pressure. The prepared Li3V2(PO4)3 was characterized by XRD and SEM. The results indicated the Li3V2(PO4)3 powder had good crystallinity and mesoporous morphology with an average diameter of about 30 nm. The pure Li3V2(PO4)3 exhibits a stable discharge capacity of 130.08 mAh g−1 at 0.1 C (14 mA g−1).  相似文献   

2.
Li3V(2 − 2x/3)Mgx(PO4)3/C (x = 0, 0.15, 0.30, 0.45) composites have been synthesized by the sol-gel assisted solid state method, using adipic acid C6H10O4 (hexanedioic acid) as carbon source. The particle size of the composites is ∼1 μm. During the pyrolysis process, Li3V(2 − 2x/3)Mgx(PO4)3/C network structure is formed. The effect of Mg2+ doped on the electrochemical properties of Li3V2(PO4)3/C positive materials has been studied. Li3V1.8Mg0.30(PO4)3/C as the cathode materials of Li-ion batteries, the retention rate of discharge capacity is 91.4% (1 C) after 100 cycles. Compared with Li3V2(PO4)3/C, Li3V(2 − 2x/3)Mgx(PO4)3/C composites have shown enhanced capacity and retention rate capability. The long-term cycles and ex situ XRD tests disclose that Li3V1.8Mg0.30(PO4)3 exhibits higher structural stability than the undoped system.  相似文献   

3.
A carbon-coated nanocrystalline LiFePO4 cathode material was synthesized by pyrolysis of polyacrylate precursor containing Li+, Fe3+ and PO4. The powder X-ray diffraction (XRD) and high-resolution TEM micrographs revealed that the LiFePO4/C composite as prepared has a core-shell structure with pure olivine LiFePO4 crystallites as cores and intimate carbon coating as a shell layer. Between the composite particulates, there exists a carbon matrix binding the nanocrystallites together into micrometer particles. The electrochemical measurements demonstrated that the LiFePO4/C composite with an appropriate carbon content can deliver a very high discharge capacity of 157 mAh g−1 (>92% of the theoretical capacity of LiFePO4) with 95% of its initial capacity after 30 cycles. Since this preparation method uses less costly materials and operates in mild synthetic conditions, it may provide a feasible way for industrial production of the LiFePO4/C cathode materials for the lithium-ion batteries.  相似文献   

4.
Li3V2(PO4)3, Li3V2(PO4)3/C and Li3V2(PO4)3/(Ag + C) composites as cathodes for Li ion batteries are synthesized by carbon-thermal reduction (CTR) method and chemical plating reactions. The microstructure and morphology of the compounds are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The Li3V2(PO4)3/(Ag + C) particles are 0.5-1 μm in diameters. As compared to Li3V2(PO4)3, Li3V2(PO4)3/C, the Li3V2(PO4)3/(Ag + C) composite cathode exhibits high discharge capacity, good cycle performance (140.5 mAh g−1 at 50th cycle at 1 C, 97.3% of initial discharge capacity) and rate behavior (120.5 mAh g−1 for initial discharge at 5 C) for the fully delithiated (3.0-4.8 V) state. Electrochemical impedance spectroscopy (EIS) measurements show that the carbon and silver co-modification decreases the charge transfer resistance of Li3V2(PO4)3/(Ag + C) cathode, and improves the conductivity and boosts the electrochemical performance of the electrode.  相似文献   

5.
Core-shell LiFePO4@C composites were synthesized successfully from FePO4/C precursor using the polyvinyl alcohol (PVA) as the reducing agent, followed by a chemical vapor deposition (CVD) assisted solid-state reaction in the presence of Li2CO3. Some physical and chemical properties of the products were characterized by X-ray powder diffraction (XRD), Raman, SEM, TEM techniques. The effect of morphology and electrochemical properties of the composites were thoroughly investigated. XRD patterns showed that LiFePO4 has an order olivine structure with space group of Pnma. TEM micrographs exhibited that the LiFePO4 particles encapsulated with 3-nm thick carbon shells. The powders were homogeneous with grain size of about 0.8 μm. Compared with those synthesized by traditional organic carbon source mixed method, LiFePO4@C composite synthesized by CVD method exhibited better discharge capacity at initial 155.4 and 135.8 mAh g−1 at 0.1C and 1C rate, respectively. It is revealed that the carbon layer coated on the surface of LiFePO4 and the amorphous carbon wrapping and connecting the particles enhanced the electronic conductivity and rate performances of the cathode materials.  相似文献   

6.
LiFePO4/C composite cathode material was prepared by carbothermal reduction method, which uses NH4H2PO4, Li2CO3 and cheap Fe2O3 as starting materials, acetylene black and glucose as carbon sources. The precursor of LiFePO4/C was characterized by differential thermal analysis and thermogravimetry. X-ray diffraction (XRD), scanning electron microscopy (SEM) micrographs showed that the LiFePO4/C is olivine-type phase, and the addition of the carbon reduced the LiFePO4 grain size. The carbon is dispersed between the grains, ensuring a good electronic contact. The products sintered at 700 °C for 8 h with glucose as carbon source possessed excellent electrochemical performance. The synthesized LiFePO4 composites showed a high electrochemical capacity of 159.3 mAh g−1 at 0.1 C rate, and the capacity fading is only 2.2% after 30 cycles.  相似文献   

7.
LiFePO4/C composite cathode materials were synthesized by carbothermal reduction method using inexpensive FePO4 as raw materials and glucose as conductive additive and reducing agent. The precursor of LiFePO4/C was characterized by differential thermal analysis and thermogravimetry. The microstructure and morphology of the samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM) and particle size analysis. Cyclic voltammetry (CV) and charge/discharge cycling performance were used to characterize their electrochemical properties. The results showed that the LiFePO4/C composite synthesized at 650 °C for 9 h exhibited the most homogeneous particle size distribution. Residual carbon during processing was coated on LiFePO4, resulting in the enhancement of the material's electronic properties. Electrochemical measurements showed that the discharge capacity first increased and then decreased with the increase of synthesis temperature. The optimal sample synthesized at 650 °C for 9 h exhibited a highest initial discharge capacity of 151.2 mA h g−1 at 0.2 C rate and 144.1 mA h g−1 at 1 C rate with satisfactory capacity retention rate.  相似文献   

8.
To prepare a high-capacity cathode material with improved electrochemical performance for lithium rechargeable batteries, Co3(PO4)2 nanoparticles are coated on the surface of powdered Li[Co0.1Ni0.15Li0.2Mn0.55]O2, which is synthesized by a simple combustion method. The coated powder prepared under proper conditions for Co3(PO4)2 content and annealing temperature shows an optimum coating layer that consists of a LixCoPO4 phase formed by reaction with lithium impurities during heat treatment. A sample coated with 3 wt.% Co3(PO4)2 and annealed at 800 °C proves to be the best in terms of specific capacity, cycle performance and rate capability. Thermal stability is also enhanced by the coating, as demonstrated a decrease in the onset temperature and/or the heat generated during thermal runaway.  相似文献   

9.
LiFePO4/C composite was synthesized at 600 °C in an Ar atmosphere by a soluble starch sol assisted rheological phase method using home-made amorphous nano-FePO4 as the iron source. XRD, SEM and TEM observations show that the LiFePO4/C composite has good crystallinity, ultrafine sphere-like particles of 100-200 nm size and in situ carbon. The synthesized LiFePO4 could inherit the morphology of FePO4 precursor. The electrochemical performance of the LiFePO4 by galvanostatic cycling studies demonstrates excellent high-rate cycle stability. The Li/LiFePO4 cell displays a high initial discharge capacity of more than 157 mAh g−1 at 0.2C and a little discharge capacity decreases from the first to the 80th cycle (>98.3%). Remarkably, even at a high current density of 30C, the cell still presents good cycle retention.  相似文献   

10.
9LiFePO4·Li3V2(PO4)3/C is synthesized via a carbon thermal reaction using petroleum coke as both reduction agent and carbon source. The as-prepared material is not a simple mixture of LiFePO4 (LFP) and Li3V2(PO4)3 (LVP), but a composite possessing two phases: one is V-doped LFP and the other is Fe-doped LVP. The typical structure enhances the electrical conductivity of the composite and improves the electrochemical performances. The first discharge capacity of 9LFP·LVP/C in 18650 type cells is 168 mAh g−1 at 1 C (1 C9LFP·LVP/C = 166 mA g−1), and exhibits high reversible discharge capacity of 125 mAh g−1 at 10 C even after 150 cycles. At the temperature of −20 °C, the reversible capacity of 9LFP·LVP/C can maintain 75% of that at room temperature.  相似文献   

11.
Plate-like Li3V2(PO4)3/C composite is synthesized via a solution route followed by solid-state reaction. The Li3V2(PO4)3/C plates are 40-100 nm in thicknesses and 2-10 μm in lengths. TEM images show that a uniform carbon layer with a thickness of 5.3 nm presents on the surfaces of Li3V2(PO4)3 plates. The apparent Li-ion diffusion coefficient of the plate-like Li3V2(PO4)3/C is calculated to be 2.7 × 10−8 cm2 s−1. At a charge-discharge rate of 3 C, the plate-like Li3V2(PO4)3/C exhibits an initial discharge capacity of 125.2 and 133.1 mAh g−1 in the voltage ranges of 3.0-4.3 and 3.0-4.8 V, respectively. After 500 cycles, the electrodes still can deliver a discharge capacity of 111.8 and 97.8 mAh g−1 correspondingly, showing a good cycling stability.  相似文献   

12.
Composites of monoclinic Li3−xM′xV2−yM″2y(PO4)3 (M′ = K, M″ = Sc, Mg + Ti) with carbon were synthesized by solid-state reaction using oxalic acid or 6% H2/Ar gas mixture as reducing agents at sintering temperature of 850 °C. The samples were characterized by X-ray diffraction (XRD), voltammetry and electrochemical galvanostatic cycling. The capacity of Li3V2(PO4)3 synthesized using hydrogen as the reducing agent was 127 mA h g−1 and decreased to 120 mA h g−1 after 20 charge-discharge cycles. The substitution of lithium and vanadium for other ions did not result in the improvement of the electrochemical characteristics of the samples.  相似文献   

13.
LiFePO4 cathode materials with distinct particle sizes were prepared by a planetary ball-milling method. The effects of particle size on the morphology, thermal stability and electrochemical performance of LiFePO4 cathode materials were investigated. The ball-milling method decreased particle size, thereby reducing the length of diffusion and improving the reversibility of the lithium ion intercalation/deintercalation. It is worth noting that the small particle sample prepared using malonic acid as a carbon source achieved a high capacity of 161 mAh g−1 at a 0.1 C rate and had a very flat capacity curve during the early 50 cycles. However, the big particle samples (∼400 nm) decayed more dramatically in capacity than the small particle size samples (∼200 nm) at high current densities. The improvement in electrode performance was mainly due to the fine particles, the small size distribution, and the increase in electronic conductivity as a result of carbon coating. The structure and morphology of the ground LiFePO4 samples were characterized with XRD, FE-SEM, TEM, EDS, and DSC techniques.  相似文献   

14.
LiFePO4 as a cathode material for rechargeable lithium batteries was prepared by hydrothermal process at 170 °C under inert atmosphere. The starting materials were LiOH, FeSO4, and (NH4)2HPO4. The particle size of the obtained LiFePO4 was 0.5 μm. The electrochemical properties of LiFePO4 were characterized in a mixed solvent of ethylene carbonate and diethyl carbonate (1:1 in volume) containing 1.0 mol dm−3 LiClO4. The hydrothermally synthesized LiFePO4 exhibited a discharge capacity of 130 mA h g−1, which was smaller than theoretical capacity (170 mA h g−1). The annealing of LiFePO4 at 400 °C in argon atmosphere was effective in increasing the discharge capacity. The discharge capacity of the annealed LiFePO4 was 150 mA h g−1.  相似文献   

15.
Phospho-olivine LiFePO4 cathode materials were prepared by hydrothermal reaction at 150 °C. Carbon black was added to enhance the electrical conductivity of LiFePO4. LiFePO4-C powders (0, 3, 5 and 10 wt.%) were characterized by X-ray diffraction (XRD) and transmission electron microscope (TEM). LiFePO4-C/solid polymer electrolyte (SPE)/Li cells were characterized electrochemically by charge/discharge experiments at a constant current density of 0.1 mA cm−2 in a range between 2.5 and 4.3 V vs. Li/Li+, cyclic voltammetry (CV) and ac impedance spectroscopy. The results showed that initial discharge capacity of LiFePO4 was 104 mAh g−1. The discharge capacity of LiFePO4-C/SPE/Li cell with 5 wt.% carbon black was 128 mAh g−1 at the first cycle and 127 mAh g−1 after 30 cycles, respectively. It was demonstrated that cycling performance of LiFePO4-C/SPE/Li cells was better than that of LiFePO4/SPE/Li cells.  相似文献   

16.
Pure LiFePO4 was synthesized by heating an amorphous LiFePO4. The amorphous LiFePO4 obtained through lithiation of FePO4·xH2O by using oxalic acid as a novel reducing agent at room temperature. FePO4·xH2O was prepared through co-precipitation by employing FeSO4·7H2O and H3PO4 as raw materials. X-ray diffraction (XRD), scanning electron microscopy (SEM) observations showed that LiFePO4 composites with fine particle sizes between 100 nm and 200 nm, and with homogenous sizes distribution. The electrochemical performance of LiFePO4 powder synthesized at 500 °C were evaluated using coin cells by galvanostatic charge/discharge. The synthesized LiFePO4 composites showed a high electrochemical capacity of 166 mAh g−1 at the 0.1C rate, and possessed a favorable capacity cycling maintenance at the 0.1C, 0.2C, 0.5C and 1C rate.  相似文献   

17.
LiFePO4, olivine-type LiFe0.9Mn0.1PO4/Fe2P composite was synthesized by mechanical alloying of carbon (acetylene back), M2O3 (M = Fe, Mn) and LiOH·H2O for 2 h followed by a short-time firing at 900 °C for only 30 min. By varying the carbon excess different amounts of Fe2P second phase was achieved. The short firing time prevented grain growth, improving the high-rate charge/discharge capacity. The electrochemical performance was tested at various C/x-rate. The discharge capacity at 1C rate was increased up to 120 mAh g−1 for the LiFe0.9Mn0.1PO4/Fe2P composite, while that of the unsubstituted LiFePO4/Fe2P and LiFePO4 showed only 110 and 60 mAh g−1, respectively. Electronic conductivity and ionic diffusion constant were measured. The LiFe0.9Mn0.1PO4/Fe2P composite showed higher conductivity and the highest diffusion coefficient (3.90 × 10−14 cm2 s−1). Thus the improvement of the electrochemical performance can be attributed to (1) higher electronic conductivity by the formation of conductive Fe2P together with (2) an increase of Li+ ion mobility obtained by the substitution of Mn2+ for Fe2+.  相似文献   

18.
Cl-doped LiFePO4/C cathode materials were synthesized through a carbothermal reduction route, and the microstructure and electrochemical performances were systematically studied. Cl-doped LiFePO4/C cathode materials presented a high discharge capacity of ∼90 mAh g−1 at the rate of 20 C (3400 mA g−1) at room temperature. Electrochemical impedance spectroscopy and cyclic voltamperometry indicated the optimized electrochemical reaction and Li+ diffusion in the bulk of LiFePO4 due to Cl-doping. The improved Li+ diffusion capability is attributed to the microstructure modification of LiFePO4 via Cl-doping.  相似文献   

19.
Carbon-coated LiMn0.4Fe0.6PO4 composites (LiMn0.4Fe0.6PO4/C) were synthesized for use as cathode materials in lithium batteries. The composites were synthesized by a mechanical activation process that consists of high-energy ball milling for 10 h, followed by thermal treatment at different temperatures. The structure, particle size and surface morphology of these cathode active materials were investigated by inductively coupled plasma (ICP) analysis, energy dispersive spectrometry (EDS), high-resolution Raman spectroscopy, X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and high-resolution transmission electron microscopy (HR-TEM). The firing temperature was observed to affect morphology, particle size, elemental distribution, structure of the residual carbon, and consequently the electrochemical properties of the composites. LiMn0.4Fe0.6PO4/C synthesized at 600 °C possessed the most desirable properties and it exhibited the best performance when used as cathode in lithium batteries at room temperature. The cell, comprising cathode of this composite, exhibited the initial discharge capacities of 144.5 mAh g−1 (85.0% of theoretical capacity) and 122.0 mAh g−1 (71.8%), respectively, at 0.1 and 1 C-rates. The cathode showed good cycle stability without substantial capacity fade up to 50 cycles.  相似文献   

20.
In order to search for cathode materials with better performance, Li3(V1−xMgx)2(PO4)3 (0, 0.04, 0.07, 0.10 and 0.13) is prepared via a carbothermal reduction (CTR) process with LiOH·H2O, V2O5, Mg(CH3COO)2·4H2O, NH4H2PO4, and sucrose as raw materials and investigated by X-ray diffraction (XRD), scanning electron microscopic (SEM) and electrochemical impedance spectrum (EIS). XRD shows that Li3(V1−xMgx)2(PO4)3 (x = 0.04, 0.07, 0.10 and 0.13) has the same monoclinic structure as undoped Li3V2(PO4)3 while the particle size of Li3(V1−xMgx)2(PO4)3 is smaller than that of Li3V2(PO4)3 according to SEM images. EIS reveals that the charge transfer resistance of as-prepared materials is reduced and its reversibility is enhanced proved by the cyclic votammograms. The Mg2+-doped Li3V2(PO4)3 has a better high rate discharge performance. At a discharge rate of 20 C, the discharge capacity of Li3(V0.9Mg0.1)2(PO4)3 is 107 mAh g−1 and the capacity retention is 98% after 80 cycles. Li3(V0.9Mg0.1)2(PO4)3//graphite full cells (085580-type) have good discharge performance and the modified cathode material has very good compatibility with graphite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号