共查询到20条相似文献,搜索用时 0 毫秒
1.
The combination of biomass gasification with solid oxide fuel cells (SOFCs) is gaining increasing interest as an efficient and environmentally benign method of producing electricity and heat. However, tars in the gas stream arising from the gasification of biomass material can deposit carbon on the SOFC anode, having detrimental effects to the life cycle and operational characteristics of the fuel cell. This work examines the impact of biomass gasification syngas components combined with benzene as a model tar, on carbon formation on Ni/CGO (gadolinium-doped ceria) SOFC anodes. Thermodynamic calculations suggest that SOFCs operating at temperatures > 750 °C are not susceptible to carbon deposition from a typical biomass gasification syngas containing 15 g m−3 benzene.However, intermediate temperature SOFCs operating at temperatures < 650 °C require threshold current densities well above what is technologically achievable to inhibit the effects of carbon deposition. SOFC anodes have been shown to withstand tar levels of 2-15 g m−3 benzene at 765 °C for 3 h at a current density of 300 mA cm−2, with negligible impact on the electrochemical performance of the anode. Furthermore, no carbon could be detected on the anode at this current density when benzene levels were <5 g m−3. 相似文献
2.
Ph. Hofmann K.D. Panopoulos L.E. Fryda A. Schweiger J.P. Ouweltjes J. Karl 《International Journal of Hydrogen Energy》2008
The aim of this work was to experimentally assess the feasibility of feeding real biomass product gas to solid oxide fuel cells (SOFC) for efficient and clean power production. The impact of tars on Ni-GDC anode was the main focus of the experiments. Planar SOFC membranes were operated at two gasification sites: (a) autothermal fixed-bed downdraft gasifier and (b) allothermal bubbling fluidized bed gasifier. In all cases the gas was hot-cleaned from particulates, HCl and H2S. 相似文献
3.
Shamiul IslamJosephine M. Hill 《Journal of power sources》2011,196(11):5091-5094
A microwave irradiation process is used to deposit Cu nanoparticles on the Ni/YSZ anode of an electrolyte-supported solid oxide fuel cell (SOFC). The reaction time in the microwave is only 15 s for the deposition of 6 wt% Cu (with respect to Ni) from a solution of Cu(NO3)2·3H2O and ethylene glycol (HOCH2CH2OH). The morphology of the deposited Cu particles is spherical and the average size of the particles is less than 100 nm. The electrochemical performance of the microwave Cu-coated Ni/YSZ anodes is tested in dry H2 and dry CH4 at 1073 K, and the anodes are characterized with scanning electron microscopy, electrochemical impedance spectroscopy, and temperature-programmed oxidation. The results indicate that preparation of the anodes by the microwave technique produces similar performance trend as those reported for Cu-Ni/YSZ/CeO2 anodes prepared by impregnation. Specifically, less carbon is formed on the Cu-Ni/YSZ than on conventional Ni/YSZ anodes when exposed to dry methane and the carbon that does form is more reactive. 相似文献
4.
An integrated process of biomass gasification and solid oxide fuel cells (SOFC) is investigated using energy and exergy analyses. The performance of the system is assessed by calculating several parameters such as electrical efficiency, combined heat and power efficiency, power to heat ratio, exergy destruction ratio, and exergy efficiency. A performance comparison of power systems for different gasification agents is given by thermodynamic analysis. Exergy analysis is applied to investigate exergy destruction in components in the power systems. When using oxygen-enriched air as gasification agent, the gasifier reactor causes the greatest exergy destruction. About 29% of the chemical energy of the biomass is converted into net electric power, while about 17% of it is used to for producing hot water for district heating purposes. The total exergy efficiency of combined heat and power is 29%. For the case in which steam as the gasification agent, the highest exergy destruction lies in the air preheater due to the great temperature difference between the hot and cold side. The net electrical efficiency is about 40%. The exergy combined heat and power efficiency is above 36%, which is higher than that when air or oxygen-enriched air as gasification agent. 相似文献
5.
Thermochemical gasification of biomass through the supercritical water gasification (SCWG) has high gasification efficiency at lower temperatures and can deal directly with wet biomass without drying. Besides, solid oxide fuel cells (SOFCs) appear to be an important technology in the future as they can operate at a high efficiency. Therefore, the combination of biomass gasification through supercritical water with SOFC represents one of the most potential applications for highly efficient utilization of biomass. 相似文献
6.
Thermodynamic calculations were carried out to evaluate the performance of small-scale gasifier–SOFC–GT systems of the order of 100 kW. Solid Oxide Fuel Cells (SOFCs) with Nickel/Gadolinia Doped Ceria (Ni/GDC) anodes were considered. High system electrical efficiencies above 50% are achievable with these systems. The results obtained indicate that when gas cleaning is carried out at temperatures lower than gasification temperature, additional steam may have to be added to biosyngas in order to avoid carbon deposition. To analyze the influence of gas cleaning at lower temperatures and steam addition on system efficiency, additional system calculations were carried out. It is observed that steam addition does not have significant impact on system electrical efficiency. However, generation of additional steam using heat from gas turbine outlet decreases the thermal energy and exergy available at the system outlet thereby decreasing total system efficiency. With the gas cleaning at atmospheric temperature, there is a decrease in the electrical efficiency of the order of 4–5% when compared to the efficiency of the systems working with intermediate to high gas-cleaning temperatures. 相似文献
7.
He Miao 《Journal of power sources》2010,195(8):2230-655
This paper presents a systematical evaluation of the effects of CO2, H2O, CO, N2 and CH4 in the coal syngas on the properties of typical Ni/YSZ anode-supported solid oxide fuel cells (SOFCs). The results show that CO2, H2O, CO, N2 and CH4 have complicated effects on the cell performance and the electrochemical impedance spectra (EIS) analysis reveals the addition of these gases influences electrode processes such as the oxygen ion exchange from YSZ to anode TPBs, the charge transfer at the anode TPBs, gas diffusion and conversion at the anode. Two kinds of mixture gases with different compositions are thus constituted and used as fuel for aging test on two cells at 750 °C. No degradation or carbon deposition is observed for the cell fueled with 40% H2-20% CO-20% H2O-20% CO2 for 360 h while the cell fueled with 50% H2-30% CO-10% H2O-10% CO2 exhibits an abrupt degradation after 50 h due to the severe carbon deposition. 相似文献
8.
C. Ozgur Colpan Feridun Hamdullahpur Ibrahim Dincer Yeong Yoo 《International Journal of Hydrogen Energy》2010
In this paper, an integrated solid oxide fuel cell (SOFC) and biomass gasification system is modeled to study the effect of gasification agent (air, enriched oxygen and steam) on its performance. In the present modeling, a heat transfer model for SOFC and thermodynamic models for the rest of the components are used. In addition, exergy balances are written for the system components. The results show that using steam as the gasification agent yields the highest electrical efficiency (41.8%), power-to-heat ratio (4.649), and exergetic efficiency (39.1%), but the lowest fuel utilization efficiency (50.8%). In addition, the exergy destruction is found to be the highest at the gasifier for the air and enriched oxygen gasification cases and the heat exchanger that supplies heat to the air entering the SOFC for the steam gasification case. 相似文献
9.
Jinshuo Qiao Kening Sun Naiqing Zhang Bing Sun Jiangrong Kong Derui Zhou 《Journal of power sources》2007
In this paper, Ni/YSZ and Ni–CeO2/YSZ anodes for a solid oxide fuel cell (SOFC) were prepared by tape casting and vacuum impregnation. By this method, the Ni content in the anode could be reduced compared to the traditional tape casting method. It was found that adding CeO2 into the Ni/YSZ anode by a Ni(NO3)2 and Ce(NO3)3 mixed impregnation could further enhance cell performance. This was investigated in H2 at 1073 K. XRD patterns indicated that CeO2 and Ni were separate phases, and the CeO2 addition could enhance the Ni dispersion on the YSZ framework surface which was observed by SEM images. It was shown that adding CeO2 into the Ni anodes could decrease the cell polarization resistance. The maximum power density for cells with 25 wt.% Ni, 5 wt.% CeO2–25 wt.% Ni/YSZ, or 10 wt.% CeO2–25 wt.% Ni/YSZ anode was 230 mW cm−2, 420 mW cm−2 and 530 mW cm−2, respectively, in H2 at 1073 K. The OCV for these cells was 1.05–1.09 V, indicating that a dense electrolyte film was obtained by co-firing porous YSZ layer and dense YSZ layer. 相似文献
10.
Contaminants as particulate matter, sulfur, chlorine and tar should be removed from biosyngas to avoid damaging solid oxide fuel cells. However, there is no sufficient information on tar effect since they might be potentially used as a fuel, or they might cause performance losses and irreversible damages. Therefore, this study aims to assess whether tar can be reformed inside the SOFC and used as fuel. Short-duration experiments were conducted on Ni-GDC cells operating with simulated biosyngas containing different concentrations of representative tar compounds from biomass gasification. While benzene and ethylbenzene could be regarded as additional fuels even at concentrations as high as 15 g/Nm3, naphthalene and phenanthrene act as contaminants for the SOFC electrochemical and catalytic reactions, even at concentrations of 0.3 and 0.05 g/Nm3. However, the effect on these reactions appeared almost completely reversible. Solid carbon deposited on the SOFC ceramic housing in proximity of the inlet. Post-mortem analysis should be performed to asses the tar effect on the cell anode. 相似文献
11.
Electrochemical performance of solid oxide electrolysis cell electrodes under high-temperature coelectrolysis of steam and carbon dioxide 总被引:1,自引:0,他引:1
Pattaraporn Kim-LohsoontornJoongmyeon Bae 《Journal of power sources》2011,196(17):7161-7168
The SOEC electrodes during steam (H2O) electrolysis, carbon dioxide (CO2) electrolysis, and the coelectrolysis of H2O/CO2 are investigated. The electrochemical performance of nickel-yttria stabilised zirconia (Ni-YSZ), Ni-Gd0.1Ce0.9O1.95 (Ni-GDC), and Ni/Ruthenium-GDC (Ni/Ru-GDC) hydrogen electrodes and La0.8Sr0.2MnO3−δ-YSZ (LSM-YSZ), La0.6Sr0.4Co0.8Fe0.2O3−δ (LSCF), and La0.8Sr0.2FeO3−δ (LSF) oxygen electrodes are studied to assess the losses of each electrode relative to a reference electrode. The study is performed over a range of operating conditions, including varying the ratio of H2O/H2 and CO2/CO (50/50 to 90/10), the operating temperature (550-800 °C), and the applied voltage. The activity of Ni-YSZ electrodes during H2O electrolysis is significantly lower than that for H2 oxidation. Comparable activity for operating between the SOEC and solid oxide fuel cell (SOFC) modes is observed for the Ni-GDC and Ni/Ru-GDC. The overpotential of H2 electrodes during CO2 reduction increases as the CO2/CO ratio is increased from 50/50 to 90/10 and further increases when the electrode is exposed to a 100% CO2 (800 °C), corresponding to the increase in the area specific resistance. The electrodes exhibit comparable performance during H2O electrolysis and coelectrolysis, while the electrode performance is lower in the CO2-electrolysis mode. The activity of all the O2 electrodes as an SOFC cathode is higher than that as SOEC anodes. Among these O2 electrodes, LSM-YSZ exhibits the nearest to symmetrical behaviour. 相似文献
12.
Decentralized generation of electricity with solid oxide fuel cells from centrally converted biomass
A thermodynamic evaluation of different energy conversion chains based on centralized biomass gasification and decentralized heat and power production by a solid oxide fuel cell (SOFC) has been performed. Three different chains have been evaluated, the main difference between the chains is the secondary fuel produced via biomass gasification. The secondary fuels considered are hydrogen, synthetic natural gas (SNG) and syngas. These fuels are assumed to be distributed through a transport and distribution grid to the micro-combined heat and power (μ-CHP) systems based on a SOFC and a heat pump. 相似文献
13.
Guo-Bin Jung Jen-Yang ChenCheng-You Lin Shih-Yuan Sun 《International Journal of Hydrogen Energy》2012
A utilized regenerative solid oxide fuel cell (URSOFC) provides the dual function of performing energy storage and power generation, all in one unit. When functioning as an energy storage device, the URSOFC acts like a solid oxide electrolyzer cell (SOEC) in water electrolysis mode; whereby the electric energy is stored as (electrolyzied) hydrogen and oxygen gases. While hydrogen is useful as a transportation fuel and in other industrial applications, the URSOFC also acts as a solid oxide fuel cell (SOFC) in power generation mode to produce electricity when needed. The URSOFC would be a competitive technology in the upcoming hydrogen economy on the basis of its low cost, simple structure, and high efficiency. This paper reports on the design and manufacturing of its anode support cell using commercially available materials. Also reported are the resulting performance, both in electrolysis and fuel cell modes, as a function of its operating parameters such as temperature and current density. We found that the URSOFC performance improved with increasing temperature and its fuel cell mode had a better performance than its electrolysis mode due to a limited humidity inlet causing concentration polarization. In addition, there were great improvements in performance for both the SOFC and SOEC modes after the first test and could be attributed to an increase in porosity within the oxygen electrode, which was beneficial for the oxygen reaction. 相似文献
14.
Underground coal gasification (UCG) is a promising clean coal technology. Typically, the syngas obtained from UCG is used for power generation via the steam turbine route. In the present paper, we consider UCG as a hydrogen generator and investigate the possibility of coupling it with a solid oxide fuel cell (SOFC) to generate electrical power directly. We show, through analysis, that integration with SOFC gives two specific advantages. Firstly, because of the high operating temperature of the SOFC, its anode exhaust can be used to produce steam required for the operation of UCG as well as for the reforming of the syngas for the SOFC. Secondly, the SOFC serves as a selective absorber of oxygen from air which paves the way for an efficient system of a carbon-neutral electrical power generation from underground coal. Thermodynamic analysis of the integrated system shows considerable improvement in the net thermal efficiency over that of a conventional combined cycle plant. 相似文献
15.
Sulphur-containing impurities can have a damaging impact on nickel-based SOFC anode performance even at sub-ppm concentrations, but the electrochemical mechanism of this interaction is not fully understood. In this work, three-electrode cells of Ni-Ce0.9Gd0.1O1.95/YSZ/(La0.8Sr0.2)MnO3−x have been used to obtain new electrochemical data on the sulphur poisoning behaviour of Ni-based SOFC anodes operating at different current densities in the temperature range 700-750 °C. The three-electrode arrangement enabled direct measurement of anode overpotential, with concurrent impedance measurement to provide detail into the electrochemical processes occurring at the anode during sulphur poisoning.The initial, stepwise degradation on exposure to 0.5 ppm H2S caused an increase in anode polarization resistance, which was almost entirely recoverable on removal of H2S. Operation at higher current density was found to result in a smaller increase in anode polarization resistance. It is proposed that this initial poisoning behaviour is caused by adsorbed sulphur inhibiting surface diffusion of H atoms to active sites.Exposure to 1 ppm and 3 ppm levels of H2S led to an observed secondary degradation which was also recoverable on removal of sulphur. This degradation was caused by an increased ohmic resistance, and was more severe at higher temperatures. The authors discuss possible explanations for this behaviour. 相似文献
16.
A hybrid plant producing combined heat and power (CHP) from biomass by use of a two-stage gasification concept, solid oxide fuel cells (SOFC) and a micro gas turbine was considered for optimization. The hybrid plant represents a sustainable and efficient alternative to conventional decentralized CHP plants. A clean product gas was produced by the demonstrated two-stage gasifier, thus only simple gas conditioning was necessary prior to the SOFC stack. The plant was investigated by thermodynamic modeling combining zero-dimensional component models into complete system-level models. Energy and exergy analyses were applied. Focus in this optimization study was heat management, and the optimization efforts resulted in a substantial gain of approximately 6% in the electrical efficiency of the plant. The optimized hybrid plant produced approximately 290 kWe at an electrical efficiency of 58.2% based on lower heating value (LHV). 相似文献
17.
A. Ideris E. Croiset M. Pritzker A. Amin 《International Journal of Hydrogen Energy》2017,42(36):23118-23129
The performance of a Ni-SDC anode-supported cell operating with a dry CH4 feed stream and the effectiveness of exposing the anode to H2 as a method of removing carbon deposits are evaluated. This has involved the continuous monitoring of the outlet gas composition during CH4 operation and H2 exposure. A degradation rate in the cell voltage (~1.33 mV h?1) is observed during 100 h operation with dry CH4. Carbon is detected in the Ni-SDC anode after the stability test but only in the portion of the anode closest to the fuel channel. No carbon is detected at the electrolyte-anode interface, which is the likely reason that the cell performance remains relatively stable. The information obtained from SEM and gas outlet composition analyses can be explained by a process whereby most of the CH4 that reacts decomposes into H2 and C in the Ni-SDC anode near the fuel channel. H2 then makes its way to the anode-electrolyte interface where it is electrochemically oxidized to H2O which can also react with any C that may have formed, leaving behind C primarily at the fuel channel. When an aged cell is exposed to H2, carbon-containing gases (CO, CH4 and CO2) are released, indicating that some carbon has been removed from the anode. Examination of the anode after the test shows that some carbon still remains after this treatment. 相似文献
18.
Jeong Woo Yun Sung Pil Yoon Hee Su Kim Jonghee Han Suk Woo Nam 《International Journal of Hydrogen Energy》2012
To directly use hydrocarbon fuel without a reforming process, a new microstructure for Ni/Sm0.2Ce0.8O2−δ (Ni/SDC) anodes, in which the Ni surface of the anode is covered with a porous Sm0.2Ce0.8O2−δ thin film, was investigated as an alternative to conventional Ni/YSZ anodes. The porous SDC thin layer was coated on the pores of the anode using the sol–gel coating method. The cell performance was improved by 20%–25% with the Ni/SDC anode relative to the cell performance with the Ni/YSZ anode due to the high ionic conductivity of the Ni/SDC anode and the increase of electrochemical reaction sites. For the SDC-coated Ni/SDC anode operating with methane fuel, no significant degradation of the cell performance was observed after 180 h due to the surface modification with the SDC film on the Ni surface, which opposes the severe degradation of the cell performance that was observed for the Ni/YSZ anode, which results from carbon deposition by methane cracking. Carbon was hardly detected in the SDC-coated Ni/SDC anode due to the catalytic oxidation of the deposited carbon on the SDC film as well as the electrochemical oxidation of methane in the triple-phase-boundary. 相似文献
19.
This paper report the results of our investigation on electrophoretic deposition (EPD) of YSZ particles from its suspension in acetylacetone onto a non-conducting NiO–YSZ substrate. In principle, it is not possible to carry out electrophoretic deposition on non-conducting substrates. In this case, the EPD of YSZ particles on a NiO–YSZ substrate was made possible through the use of an adequately porous substrate. The continuous pores in the substrates, when saturated with the solvent, helped in establishing a “conductive path” between the electrode and the particles in suspension. Deposition rate was found to increase with increasing substrate porosity up to a certain value. The higher the applied voltage, the faster the deposition. For a given applied voltage, there exists a threshold porosity value below which EPD becomes practically impossible. An SOFC constructed on bi-layers of NiO–YSZ/YSZ with YSZ layer thickness of 40 μm exhibited an open circuit voltage (OCV) of 0.97 V at 650 °C and peak power density of 263.8 mW cm−2 at 850 °C when tested with H2 as fuel and ambient air as oxidant. 相似文献
20.
Takeshi Komatsu Yoshiteru Yoshida Kimitaka Watanabe Reiichi Chiba Hiroaki Taguchi Himeko Orui Hajime Arai 《Journal of power sources》2010,195(17):5601-5605
We investigated the effect of current loading on the degradation behavior of an anode-supported solid oxide fuel cell (SOFC). The cell consisted of LaNi0.6Fe0.4O3 (LNF), alumina-doped scandia stabilized zirconia (SASZ), and a Ni-SASZ cermet as the cathode, electrolyte, and anode, respectively. The test was carried out at 1073 K with constant loads of 0.3, 1.0, 1.5, and 2.3 A cm−2. The degradation rate, defined by the voltage loss during a fixed period (about 1000 h), was faster at higher current densities. From an impedance analysis, the degradation depended mainly on increases in the cathodic resistance, while the anodic and ohmic resistances contributed very little. The cathode microstructures were observed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). 相似文献