首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Global warming due to CO2 emissions has led to the projection of hydrogen as an important fuel for future. A lot of research has been going on to design combustion appliances for hydrogen as fuel. This has necessitated fundamental research on combustion characteristics of hydrogen fuel. In this work, a combination of experiments and computational simulations was employed to study the effects of diluents (CO2, N2, and Ar) on the laminar burning velocity of premixed hydrogen/oxygen flames using the heat flux method. The experiments were conducted to measure laminar burning velocity for a range of equivalence ratios at atmospheric pressure and temperature (300 K) with reactant mixtures containing varying concentrations of CO2, N2, and Ar as diluents. Measured burning velocities were compared with computed results obtained from one-dimensional laminar premixed flame code PREMIX with detailed chemical kinetics and good agreement was obtained. The effectiveness of diluents in reduction of laminar burning velocity for a given diluent concentration is in the increasing order of argon, nitrogen, carbon dioxide. This may be due to increased capabilities either to quench the reaction zone by increased specific heat or due to reduced transport rates. The lean and stoichiometric H2/O2/CO2 flames with 65% CO2 dilution exhibited cellular flame structures. Detailed three-dimensional simulation was performed to understand lean H2/O2/CO2 cellular flame structure and cell count from computed flame matched well with the experimental cellular flame.  相似文献   

2.
王珂 《工业加热》2023,(9):39-41+51
在目前煤炭依然作为能源主体的背景下,控制燃煤污染物排放有着重要意义。基于CFD数值模拟,建立伴流燃烧器模型,控制燃料、氧化剂入口流量恒定,设计了O2/CO2、O2/N2氧化剂氛围中O2浓度在21%~40%内的多种工况,对煤粉燃烧特性及燃烧产生的污染物进行了研究。分析了不同工况下煤粉燃烧的温度分布、燃烧速率、碳烟、NOx的生成情况。结果显示,在O2/CO2、O2/N2两种氧化剂氛围中,随着O2浓度的上升,煤粉燃烧温度升高、燃烧速率增大,碳烟生成量均增加,同等O2浓度条件下,O2/CO2氛围的煤粉燃烧温度和燃烧速率均高于O2/N2氛围,碳烟生成量小于O2/N2氛围,且O2/CO2...  相似文献   

3.
Oxidative steam reforming of ethanol at low oxygen to ethanol ratios was investigated over nickel catalysts on Al2O3 supports that were either unpromoted or promoted with CeO2, ZrO2 and CeO2–ZrO2. The promoted catalysts showed greater activity and a higher hydrogen yield than the unpromoted catalyst. The characterization of the Ni-based catalysts promoted with CeO2 and/or ZrO2 showed that the variations induced in the Al2O3 by the addition of CeO2 and/or ZrO2 alter the catalyst's properties by enhancing Ni dispersion and reducing Ni particle size. The promoters, especially CeO2–ZrO2, improved catalytic activity by increasing the H2 yield and the CO2/CO and the H2/CO values while decreasing coke formation. This results from the addition of ZrO2 into CeO2. This promoter highlights the advantages of oxygen storage capacity and of mobile oxygen vacancies that increase the number of surface oxygen species. The addition of oxygen facilitates the reaction by regenerating the surface oxygenation of the promoters and by oxidizing surface carbon species and carbon-containing products.  相似文献   

4.
5.
对Li2CO3/Na2CO3/K2CO3及其二元和三元混合熔融盐的密度、比热容、黏度、热导率进行分子动力学模拟(MD),对比得出模拟结果与现有的实验数据和模拟值相近。结果表明:随着温度的升高,密度逐渐减小,离子之间的距离增加,导致对剪切应力的抵抗力变小,这说明单组分、二元和三元熔融盐黏度的负温度依赖性。对于熔融盐的热导率,单组分和二元熔融盐也呈现出负温度依赖性,而三元熔融盐趋势是随温度的升高呈上升状态。  相似文献   

6.
采用反应分子动力学(ReaxFF MD)模拟方法研究了O2/CO2/H2O气氛下CO的燃烧。结果表明:根据化学平衡原理,高浓度CO2抑制CO的氧化,同时CO2在高温下参与反应CO2+H—→CO+OH,进一步抑制CO氧化。在较低温度条件下,较高浓度H2O的三体效应显著,抑制了CO氧化。另一方面,在较高温度条件下,H2O参与的H2O+H—→H2+OH和H2O+O—→OH+OH反应占据其化学作用的主导地位,进而促进CO氧化。随着O2浓度的增加,CO的氧化速度加快。  相似文献   

7.
为掌握煤半焦与生物质在O2/N2和O2/CO2条件下的混燃特性及其影响因素,采用全自动物理化学吸附仪获得了煤半焦-生物质混合燃料的孔隙结构,采用热重实验分析了两种燃料的混燃特性和反应动力学,通过多元线性回归法研究了燃料比、比表面积与混燃特性参数之间的关系。结果表明,O2/N2气氛下,掺混生物质可改善煤半焦的着火、燃尽及综合燃烧特性;O2/CO2气氛下,掺混生物质能改善煤半焦的着火特性,但会延迟其燃尽。混燃的活化能在低温区和高温区有显著差异,生物质掺混比增大,两个温区的活化能都降低;两种气氛下,低温区的活化能相近,但O2/CO2气氛下高温区的活化能显著高于O2/N2气氛下的。O2/N2气氛下孔隙结构对燃烧特性的影响更显著,而O2/CO2气氛下...  相似文献   

8.
本文制备了一系列Ag/Al2O3(Li2O)/g-C3N4复合催化剂,考察了其可见光催化乙醇制取环氧乙烷的性能。Li2O可调变Al2O3表面的酸性,从而降低了主要副产物乙醛的选择性。Ag/Al2O3(Li2O) 在g-C3N4上的负载量对产物环氧乙烷的选择性有较大影响,当Ag/Al2O3(Li2O) 负载量为5wt%时,乙醇具有较高的转换率,且环氧乙烷的选择性高达100%。  相似文献   

9.
以工业棕榈酸和甲醇为原料,采用溶胶-凝胶法制备稀土固体超强酸催化剂SO42-/SnO2-CeO2,催化合成生物柴油。考察了稀土氧化铈添加量、焙烧温度、焙烧时间、硫酸浓度、醇酸质量比、催化剂用量和反应时间对酯化反应的影响。结果表明,当氧化铈添加量为5%时,在2.0 mol/L硫酸浸渍后,于550℃下焙烧3 h制备的催化剂性能最好。正交试验结果表明,合成生物柴油的优化条件为醇酸质量比为15∶25,催化剂用量为棕榈酸质量的4%,反应时间为4 h,在此条件下,酯化率为95.4%。经GC-MS分析,酯产物主要为直链十六烷酸甲酯和10-十八碳烯酸甲酯。  相似文献   

10.
Thermal behaviors and stability of glass/glass–ceramic-based sealant materials are critical issues for high temperature solid oxide fuel/electrolyzer cells. To understand the thermophysical properties and devitrification behavior of SrO–La2O3–Al2O3–B2O3–SiO2 system, glasses were synthesized by quenching (25 − X)SrO–20La2O3–(7 + X)Al2O3–40B2O3–8SiO2 oxides, where X was varied from 0.0 mol% to 10.0 mol% at 2.5 mol% interval. Thermal properties were characterized by dilatometry and differential scanning calorimetry (DSC). Microstructural studies were performed by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD). All the compositions have a glass transition temperature greater than 620 °C and a crystallization temperature greater than 826 °C. Also, all the glasses have a coefficient of thermal expansion (CTE) between 9.0 × 10−6 K−1 and 14.5 × 106 K−1 after the first thermal cycle. La2O3 and B2O3 contribute to glass devitrification by forming crystalline LaBO3. Al2O3 stabilizes the glasses by suppressing devitrification. Significant improvement in devitrification resistance is observed as X increases from 0.0 mol% to 10.0 mol%.  相似文献   

11.
Complex hydrides and Metal–N–H-based materials have attracted considerable attention due to their high hydrogen content. In this paper, a novel amide–hydride combined system was prepared by ball milling a mixture of Na2LiAlH6–Mg(NH2)2 in a molar ratio of 1:1.5. The hydrogen storage performances of the Na2LiAlH6–1.5Mg(NH2)2 system were systematically investigated by a series of dehydrogenation/hydrogenation evaluation and structural analyses. It was found that a total of ∼5.08 wt% of hydrogen, equivalent to 8.65 moles of H atoms, was desorbed from the Na2LiAlH6–1.5Mg(NH2)2 combined system. In-depth investigations revealed that the variable milling treatments resulted in the different dehydrogenation reaction pathways due to the combination of Al and N caused by the energetic milling. Hydrogen uptake experiment indicated that only ∼4 moles of H atoms could be reversibly stored in the Na2LiAlH6–1.5Mg(NH2)2 system perhaps due to the formation of AlN and Mg3N2 after dehydrogenation.  相似文献   

12.
Ni (2.5 wt%) and Co (2.5 wt%) supported over ZrO2/Al2O3 were prepared by following a hydrolytic co-precipitation method. The synthesized catalysts were further promoted by Rh incorporation (0.01–1.00 wt%) and tested for their catalytic performance for dry CO2 reforming, combined steam–CO2 reforming and oxy–CO2 reforming of methane for production of syngas. The catalysts were characterized by using N2 physical adsorption, XRD, H2–TPR, SEM, CO2–TPD, NH3–TPD, TEM and TGA. The results revealed that ZrO2 phase was in crystalline form in the catalysts along with amorphous Al oxides. Ni and Co were confirmed to be in their respective spinel phases that were reducible to metallic form at 800 °C under H2. Ni and Co were well dispersed with their nano-crystalline nature. The catalyst with 0.2% loading of Rh showed superior performance in the studied reactions for reforming of methane. This catalyst also showed good coke resistance ability for dry CO2 reforming reaction with 3.8 wt% of carbon formation during the reaction as compared to 11.6 wt% carbon formation over the catalyst without Rh. The catalyst performance was stable throughout the reaction time for CH4 conversions, irrespective of carbon formation with slight decline (~1%) in CO2 conversion. For dry CO2 reforming reaction, this catalyst showed good conversion for both CH4 and CO2 (67.6% and 71.8% respectively) with a H2/CO ratio of 0.84, while for the Oxy-CO2 reforming reaction, the activity was superior with CH4 and CO2 conversions (73.7% and 83.8% respectively) and H2/CO ratio of 1.05.  相似文献   

13.
All-solid-state lithium secondary batteries using LiCoO2 active materials coated with Li2SiO3 and SiO2 oxide films and Li2S–P2S5 solid electrolytes were fabricated and their electrochemical performance was investigated. The electrochemical performace of the all-solid-state cells at a high voltage region was highly improved by using oxide-coated LiCoO2. The oxide coatings are effective in suppressing the formation of an interfacial resistance between LiCoO2 and the solid electrolyte at a high cutoff voltage of 4.6 V (vs. Li). As a result, charge–discharge capacities and cycle performance at the cutoff voltage were improved. The cell with Li2SiO3-coated LiCoO2 showed a large initial discharge capacity of 130 mAh g−1 and a good capacity retention of 110 mAh g−1 after 50th cycles at the cutoff voltage of 4.6 V (vs. Li).  相似文献   

14.
在不同温度下采用乙二醇溶剂热合成法合成Bi2MoO6催化剂(BMO-x,x=140、160、180),BMO-160在450℃下煅烧的样品为BMO。用XRD、BET、SEM、EDS、UV-visDRS、XPS、in-situ DRIFTS等表征方法研究其理化特性,建立BMO和BMO-x(x=140、160、180)催化剂的反应性能与孔道结构、材料形貌和缺陷空位的构效关系。结果表明,适宜的溶剂合成温度可以形成更高的孔隙率,调控氧空位的占比,有助于产生更好的催化性能。其中,BMO-160的CO产率更高,这是由于在160℃溶剂热合成温度下制备的样品形貌更优,氧空位占比适中。  相似文献   

15.
The composite cathodes LaBaCo2O5+δ-x wt.% Ag (LBCO-xAg, x = 20, 30, 40, 50) were prepared by mechanical mixing method for intermediate-temperature solid oxide fuel cells (IT-SOFCs). The experiment results indicated that the addition of a small amount of B2O3-Bi2O3-PbO (BBP) frit to LBCO-xAg can effectively improve the adhesion and strength of cathode membrane without damaging its porous structure. The BBP frit was proved effective for lowering the sintering temperature of LBCO-xAg to 900 °C. According to the electrochemical impedance spectroscopy and cathodic polarization analysis, the LBCO-30Ag exhibited the best performance and the optimal BBP frit content was 2.5 wt.%. For LBCO-30Ag with 2.5 wt.% BBP frit, the area-specific resistance based on Sm0.2Ce0.8O1.9 (SDC) electrolyte decreased by about 57.6% at 700 °C, 60.5% at 750 °C and 75.9% at 800 °C compared to LBCO, and its cathodic overpotential was 10.7 mV at a current density of 0.2 A cm−2 at 700 °C, while the corresponding value for LBCO was 51.0 mV. The addition of Ag and BBP frit to LBCO had no significant effect on the thermal expansion.  相似文献   

16.
在水平管式炉上通过在线烟气分析仪研究了O2/CO2气氛下生物质混合比例、温度、燃烧气氛及氧浓度对生物质混煤SO2排放特性的影响规律。结果表明,O2/CO2气氛下,随着生物质混合比例的增大,生物质混煤SO2释放峰值减小,SO2排放完毕的时间减少,SO2的排放量降低;随着温度的升高,生物质混煤SO2的排放量增加。O2/CO2和O2/N2气氛下随着氧浓度的增大,生物质混煤SO2的排放量均增加。相同氧浓度时,O2/CO2气氛下生物质混煤SO2的排放量略小于O2/N2气氛下的情况,其降低幅度约为5%左右。  相似文献   

17.
Pristine Ni/γ–Al2O3 and CeO2–Ni/γ–Al2O3 catalysts were prepared by co-impregnation technique for dry reforming of propane. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) were used to examine the structure and morphology of the catalysts before and after the reforming reactions. The excellent interaction between catalyst active phases was observed in both CeO2–Ni/γ–Al2O3 and Ni/γ–Al2O3 stabilized with polyethelene glycol (Ni/γ–Al2O3–PEG). Towards C3H8 and CO2 conversion, the CeO2–Ni/γ–Al2O3 and Ni/γ–Al2O3–PEG showed improved catalytic activity when compared to the pristine Ni/γ–Al2O3 catalyst. Interestingly, high H2 concentration was achieved with the CeO2–Ni/γ–Al2O3 and high CO concentration with the Ni/γ–Al2O3–PEG, which is due to the nanoconfinement of nickel particles within the support and favorable metal-support interaction as a result of plasma reduction. The CeO2–Ni/γ–Al2O3 catalyst exhibited better stability for anti-sintering and coke resistance, thus exhibiting high reactivity and durability in the dry reforming.  相似文献   

18.
Syngas production by CO2 reforming of coke oven gas (COG) was studied in a fixed-bed reactor over Ni/La2O3–ZrO2 catalysts. The catalysts were prepared by sol–gel technique and tested by XRF, BET, XRD, H2-TPR, TEM and TG–DSC. The influence of nickel loadings and calcination temperature of the catalysts on reforming reaction was measured. The characterization results revealed that all of the catalysts present excellent resistance to coking. The catalyst with appropriate nickel content and calcination temperature has better dispersion of active metal and higher conversion. It is found that the Ni/La2O3–ZrO2 catalyst with 10 wt% nickel loading provides the best catalytic activity with the conversions of CH4 and CO2 both more than 95% at 800 °C under the atmospheric pressure. The Ni/La2O3–ZrO2 catalysts show excellent catalytic performance and anti-carbon property, which will be of great prospects for catalytic CO2 reforming of COG in the future.  相似文献   

19.
Nickel catalysts (10wt.%) supported on MgAl2O4 and γ-Al2O3 were prepared by the wet impregnation method and promoted with various contents of Ce0.75Zr0.25O2. X-ray diffraction (XRD), BET surface area, scanning electron microscopy (SEM), thermal gravimetric analysis (TGA), H2-temperature programmed reduction (TPR) and CO2-temperature programmed desorption (TPD) were employed to observe the characteristics of the prepared catalysts. Ni/γ-Al2O3 and Ni/Ce0.75Zr0.25O2 (5wt.%)–MgAl2O4 showed better activity in CO2 methane reforming with 75.7(0.93) and 75.4(0.82) CH4 conversions (and H2/CO ratio). H2O was added to feed in the range of H2O/(CH4 + CO2): 0.1–0.5 to suppress reverse water gas shift (RWGS) effect and adjusting H2/CO ratio. The CH4 conversions (and H2/CO) increased to 81(1.1) with 0.5 water/carbon mole ratio in Ni/γ-Al2O3 and 85(1.2) with 0.2 water/carbon mole ratio in Ni/Ce0.75Zr0.25O2 (5wt.%)–MgAl2O4. The stability of Ni/Ce0.75Zr0.25O2 (5wt.%)–MgAl2O4 in the presence and absence of water was investigated. Coke formation and amount in used catalysts were examined by SEM and TGA, respectively. The results showed that the amount of carbon was suppressed and negligible coke formation (less than 3%) was observed in the presence of 0.2 water/carbon mole ratio over Ni/Ce0.75Zr0.25O2 (5wt.%)–MgAl2O4 catalyst.  相似文献   

20.
Hydrogen production by supercritical water gasification (SCWG) is a promising technology for wet biomass utilization. Ni catalyst can realize the high gasification efficiency of biomass near the critical temperature of water. In this paper, Ni/γAl2O3 and Ni/CeO2-γAl2O3 catalysts were prepared by an impregnation method. The catalyst performance for glucose gasification in supercritical water was tested in autoclave reactor. All experiments were carried out in the autoclave at 673 K, 24.5 MPa, and the concentration of glucose was 9.09 wt.%. The catalysts before and after reaction were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), BET specific surface area measurements, X-ray fluorescence spectrum (XRF) and Thermo-gravimetric analyses (TGA) in order to investigate on the chemical property and catalytic mechanism. The experimental results showed that hydrogen yield and hydrogen selectivity increased sharply with addition of Ni/γAl2O3 and Ni/CeO2-γAl2O3 catalysts. The catalytic activity and H2 selectivity of Ni/CeO2-γAl2O3 was higher than that of Ni/γ-Al2O3 catalyst. The results revealed that carbon deposition and coking led to the deactivation of the catalysts. Ce in the Ni/CeO2-γAl2O3 catalyst had a certain role in the inhibition of carbon deposition and coking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号