首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Solid oxide fuel cells (SOFC) can be operated with a variety of fuels. In anode-supported SOFC, these fuels may decompose or react catalytically in the anode compartment resulting in mixtures that, in most cases, include high concentrations of H2 and CO. In this study, the formation of carbon from CO and H2 mixtures on Ni/YSZ anodes at 1073 K has been investigated using electrochemical and carbon characterization techniques. More carbon is deposited when Ni/YSZ anodes are exposed to CO/H2 mixtures than to pure CO. Polarization of the anodes reduced the amount of carbon deposited but the extent of the reduction depended on the gas composition.  相似文献   

2.
The high potential of solid oxide fuel cells (SOFC) arises due to the high degree of efficiency and fuel flexibility. However, the elementary kinetic steps of the anodic processes taking place at the boundary of electrolyte-anode-gas are still largely unknown. Patterned Ni anodes on Y2O3-stabilized ZrO2 are regarded as a promising method to determine these kinetics.In analogy to our previous study with patterned Ni anodes for the H2-H2O system, this study is systematically devoted to the elementary kinetics of the CO electrochemical oxidation in CO-CO2 gas mixtures. Data analysis is backed by extensive knowledge on patterned anode stability and dynamics gained during previous studies. The electrochemical characterization is performed for a large parameter variation range (pCO2, pCO and T) by electrochemical impedance spectroscopy.Contrary to the characterization in H2-H2O atmosphere no slow relaxation processes were observed and the degradation rate is smaller. Changes in parameter dependency over the investigated parameter range indicate different reaction mechanisms as a function of gas composition. Only slightly higher polarization losses are observed for CO oxidation compared to H2. The comparison of the results from patterned anodes to high-performance Ni/8YSZ cermet anodes employed in anode supported cells yields good agreement.  相似文献   

3.
In this paper, Ni/YSZ and Ni–CeO2/YSZ anodes for a solid oxide fuel cell (SOFC) were prepared by tape casting and vacuum impregnation. By this method, the Ni content in the anode could be reduced compared to the traditional tape casting method. It was found that adding CeO2 into the Ni/YSZ anode by a Ni(NO3)2 and Ce(NO3)3 mixed impregnation could further enhance cell performance. This was investigated in H2 at 1073 K. XRD patterns indicated that CeO2 and Ni were separate phases, and the CeO2 addition could enhance the Ni dispersion on the YSZ framework surface which was observed by SEM images. It was shown that adding CeO2 into the Ni anodes could decrease the cell polarization resistance. The maximum power density for cells with 25 wt.% Ni, 5 wt.% CeO2–25 wt.% Ni/YSZ, or 10 wt.% CeO2–25 wt.% Ni/YSZ anode was 230 mW cm−2, 420 mW cm−2 and 530 mW cm−2, respectively, in H2 at 1073 K. The OCV for these cells was 1.05–1.09 V, indicating that a dense electrolyte film was obtained by co-firing porous YSZ layer and dense YSZ layer.  相似文献   

4.
To directly use hydrocarbon fuel without a reforming process, a new microstructure for Ni/Sm0.2Ce0.8O2−δ (Ni/SDC) anodes, in which the Ni surface of the anode is covered with a porous Sm0.2Ce0.8O2−δ thin film, was investigated as an alternative to conventional Ni/YSZ anodes. The porous SDC thin layer was coated on the pores of the anode using the sol–gel coating method. The cell performance was improved by 20%–25% with the Ni/SDC anode relative to the cell performance with the Ni/YSZ anode due to the high ionic conductivity of the Ni/SDC anode and the increase of electrochemical reaction sites. For the SDC-coated Ni/SDC anode operating with methane fuel, no significant degradation of the cell performance was observed after 180 h due to the surface modification with the SDC film on the Ni surface, which opposes the severe degradation of the cell performance that was observed for the Ni/YSZ anode, which results from carbon deposition by methane cracking. Carbon was hardly detected in the SDC-coated Ni/SDC anode due to the catalytic oxidation of the deposited carbon on the SDC film as well as the electrochemical oxidation of methane in the triple-phase-boundary.  相似文献   

5.
The effect of sulfur poisoning on the activity and performance of Ni/Y2O3–ZrO2 (Ni/YSZ) and Ni/Gd2O3–CeO2 (Ni/GDC) cermet anodes of solid oxide fuel cells has been examined by polarization and electrochemical impedance spectroscopy (EIS) measurements at 800 °C. The anodes are alternately polarized in pure H2 and H2S-containing H2 fuels with H2S concentration gradually increased from 5 ppm to 700 ppm at 200 mA cm−2 for 2 h. The results show that the anode potential of Ni/YSZ electrodes measured in pure H2 decreases from 0.61 V to 0.34 V after exposure to H2S-containing H2 fuels with H2S concentration increased from 5 to 700 ppm. On the other hand, the anode potential of Ni/GDC electrodes measured in pure H2 decreases from 0.78 V to 0.72 V under identical test conditions. The degradation in performance for the hydrogen oxidation in H2S-containing H2 fuels is substantially smaller on Ni/GDC anodes, as compared to that on Ni/YSZ anodes. Similar trend is also observed for the change of the electrode polarization resistance for the hydrogen oxidation reaction on the Ni/YSZ and Ni/GDC anodes after exposure to H2S-containing H2 fuels. The SEM results indicate the structure modification of Ni/YSZ anodes only occurs on Ni particles, and in the case of Ni/GDC anodes, structural modification on both Ni and GDC phases occurs. The mixed ionic and electronic conductivity of GDC phase could be the primary reason for the high sulfur tolerance of the Ni/GDC cermet anodes.  相似文献   

6.
Sintering of Ni particles in Ni infiltrated porous YSZ anodes and decrease in triple phase boundary is the reason for performance loss in SOFC. In the present work, the idea of strong metal support interaction (SMSI) has been used to prevent the sintering of Ni particles by introducing TiO2 as support with Ni catalyst. Electrical conductivity variation of porous YSZ matrix impregnated with Ni and Ni/TiO2 have been investigated. Single button cells (anode supported) with and without TiO2 impregnated Ni–YSZ anode were fabricated and characterized through current–voltage measurement at different loads. It is shown that the conductivity of porous Ni–YSZ anode and the performance of SOFC button cell with the same anode decreased with the increase in temperature and redox cycling at different time intervals. The power density of 12% Ni–YSZ anode was 116 mW/cm2 and it increased to 180 mW/cm2 for 12% Ni–4% TiO2–YSZ based anodes at 800 °C. This increase was interpreted by strong attachment of Ni particles on TiO2 preventing Ni coarsening during prolonged reduction in H2 at 800 °C as observed by SEM. The power density increased with further increase in Ni loading and it reached to 400 mW/cm2 for 16% Ni–4% TiO2–YSZ based anodes. The performance increases with addition of TiO2 support in Ni–YSZ based anodes corroborates with the impedance spectroscopy analyses.  相似文献   

7.
The combination of solid oxide fuel cells (SOFCs) and biomass gasification has the potential to become an attractive technology for the production of clean renewable energy. However the impact of tars, formed during biomass gasification, on the performance and durability of SOFC anodes has not been well established experimentally. This paper reports an experimental study on the mitigation of carbon formation arising from the exposure of the commonly used Ni/YSZ (yttria stabilized zirconia) and Ni/CGO (gadolinium-doped ceria) SOFC anodes to biomass gasification tars. Carbon formation and cell degradation was reduced through means of steam reforming of the tar over the nickel anode, and partial oxidation of benzene model tar via the transport of oxygen ions to the anode while operating the fuel cell under load. Thermodynamic calculations suggest that a threshold current density of 365 mA cm−2 was required to suppress carbon formation in dry conditions, which was consistent with the results of experiments conducted in this study. The importance of both anode microstructure and composition towards carbon deposition was seen in the comparison of Ni/YSZ and Ni/CGO anodes exposed to the biomass gasification tar. Under steam concentrations greater than the thermodynamic threshold for carbon deposition, Ni/YSZ anodes still exhibited cell degradation, as shown by increased polarization resistances, and carbon formation was seen using SEM imaging. Ni/CGO anodes were found to be more resilient to carbon formation than Ni/YSZ anodes, and displayed increased performance after each subsequent exposure to tar, likely due to continued reforming of condensed tar on the anode.  相似文献   

8.
The usability of hydrogen and also carbon containing fuels is one of the important advantages of solid oxide fuel cells (SOFCs), which opens the possibility to use fuels derived from conventional sources such as natural gas and from renewable sources such as biogas. Impurities like sulfur compounds are critical in this respect. State-of-the-art Ni/YSZ SOFC anodes suffer from being rather sensitive towards sulfur impurities. In the current study, anode supported SOFCs with Ni/YSZ or Ni/ScYSZ anodes were exposed to H2S in the ppm range both for short periods of 24 h and for a few hundred hours. In a fuel containing significant shares of methane, the reforming activities of the Ni/YSZ and Ni/ScYSZ anodes were severely poisoned already at low H2S concentrations of ∼2 ppm H2S. The poisoning effect on the cell voltage was reversible only to a certain degree after exposure of 500 h in the state-of-the-art cell, due to a loss of percolation of Ni particles in the Ni/YSZ anode layers closest to the electrolyte. Using SOFCs with Ni/ScYSZ anodes improved the H2S tolerance considerably, even at larger H2S concentrations of 10 and 20 ppm over a few hundred hours.  相似文献   

9.
Anode supported (Ni/YSZ-YSZ-LSM/YSZ) solid oxide fuel cells were tested and the degradation over hundreds of hours was monitored and analyzed by impedance spectroscopy. Test conditions were chosen to focus on the Ni/YSZ anode degradation and all tests were operated at 750 °C, a current density of 0.75 A cm−2. Oxygen was supplied to the cathode and the anode inlet gas mixture had a high p(H2O)/p(H2) ratio of 0.4/0.6. Commercially available gasses were applied. The effect of different types of pre-treatments on the Ni/YSZ electrode degradation during subsequent fuel cell testing was investigated. Pre-treatments included operating at OCV (4% and 40% H2O in H2) prior to fuel cell testing, cleaning of the inlet H2 gas at 700 °C and processing the anode half cell via multilayer tape casting. Analyses of impedance spectra showed that the increase in the charge transfer reaction resistance in the Ni/YSZ (RNi,TPB) was decreased to ¼ or less for the pre-treated and fuel cell tested cells when compared with a non-pre-treated reference tested cell; all operated at the same fuel cell test conditions. Scanning electron microscopy and image analyses for the non-pre-treated reference tested cell and selected pre-treated cells showed significant differences in the area fractions of percolating nickel both in the active anode and support layer.  相似文献   

10.
A microwave irradiation process is used to deposit Cu nanoparticles on the Ni/YSZ anode of an electrolyte-supported solid oxide fuel cell (SOFC). The reaction time in the microwave is only 15 s for the deposition of 6 wt% Cu (with respect to Ni) from a solution of Cu(NO3)2·3H2O and ethylene glycol (HOCH2CH2OH). The morphology of the deposited Cu particles is spherical and the average size of the particles is less than 100 nm. The electrochemical performance of the microwave Cu-coated Ni/YSZ anodes is tested in dry H2 and dry CH4 at 1073 K, and the anodes are characterized with scanning electron microscopy, electrochemical impedance spectroscopy, and temperature-programmed oxidation. The results indicate that preparation of the anodes by the microwave technique produces similar performance trend as those reported for Cu-Ni/YSZ/CeO2 anodes prepared by impregnation. Specifically, less carbon is formed on the Cu-Ni/YSZ than on conventional Ni/YSZ anodes when exposed to dry methane and the carbon that does form is more reactive.  相似文献   

11.
A Ni–YSZ (Y2O3-stabilized ZrO2) composite is commonly used as a solid oxide fuel cell anode. The composite powders are usually synthesized by mixing NiO and YSZ powders. The particle size and distribution of the two phases generally determine the performance of the anode. Two different milling methods are used to prepare the composite anode powders, namely, high-energy milling and ball-milling that reduce the particle size. The particle size and the Ni distribution of the two composite powders are examined. The effects of milling on the performance are evaluated by using both an electrolyte-supported, symmetric Ni–YSZ/YSZ/Ni–YSZ cell and an anode-supported, asymmetric cell. The performance is examined at 800 °C by impedance analysis and current-voltage measurements.  相似文献   

12.
Solid oxide fuel cells (SOFCs) represent an option to provide a bridging technology for energy conversion (coal syngas) as well as a long-term technology (hydrogen from biomass). Whether the fuel is coal syngas or hydrogen from biomass, the effect of impurities on the performance of the anode is a vital question. The anode resistivity during SOFC operation with phosphine-contaminated syngas was studied using the in situ Van der Pauw method. Commercial anode-supported solid oxide fuel cells (Ni/YSZ composite anodes, YSZ electrolytes) were exposed to a synthetic coal syngas mixture (H2, H2O, CO, and CO2) at a constant current and their performance evaluated periodically with electrochemical methods (cyclic voltammetry, impedance spectroscopy, and polarization curves). In one test, after 170 h of phosphine exposure, a significant degradation of cell performance (loss of cell voltage, increase of series resistance and increase of polarization resistance) was evident. The rate of voltage loss was 1.4 mV h−1. The resistivity measurements on Ni/YSZ anode by the in situ Van der Pauw method showed that there were no significant changes in anode resistivity both under clean syngas and syngas with 10 ppm PH3. XRD analysis suggested that Ni5P2 and P2O5 are two compounds accumulated on the anode. XPS studies provided support for the presence of two phosphorus phases with different oxidation states on the external anode surface. Phosphorus, in a positive oxidation state, was observed in the anode active layer. Based on these observations, the effect of 10 ppm phosphine impurity (or its reaction products with coal syngas) is assigned to the loss of performance of the Ni/YSZ active layer next to the electrolyte, and not to any changes in the thick Ni/YSZ support layer.  相似文献   

13.
The optimization of electrodes for solid oxide fuel cells (SOFCs) has been achieved via a wet impregnation method. Pure La0.75Sr0.25Cr0.5Mn0.5O3−δ (LSCrM) anodes are modified using Ni(NO3)2 and/or Ce(NO3)3/(Sm,Ce)(NO3)x solution. Several yttria-stabilized zirconia (YSZ) electrolyte-supported fuel cells are tested to clarify the contribution of Ni and/or CeO2 to the cell performance. For the cell using pure-LSCrM anodes, the maximum power density (Pmax) at 850 °C is 198 mW cm−2 when dry H2 and air are used as the fuel and oxidant, respectively. When H2 is changed to CH4, the value of Pmax is 32 mW cm−2. After 8.9 wt.% Ni and 5.8 wt.% CeO2 are introduced into the LSCrM anode, the cell exhibits increased values of Pmax 432, 681, 948 and 1135 mW cm−2 at 700, 750, 800 and 850 °C, respectively, with dry H2 as fuel and air as oxidant. When O2 at 50 mL min−1 is used as the oxidant, the value of Pmax increases to 1450 mW cm−2 at 850 °C. When dry CH4 is used as fuel and air as oxidant, the values of Pmax reach 95, 197, 421 and 645 mW cm−2 at 750, 800, 850 and 900 °C, respectively. The introduction of Ni greatly improves the performance of the LSCrM anode but does not cause any carbon deposit.  相似文献   

14.
In this study, an anode-supported solid oxide fuel cell (SOFC) has been prepared using a porous yttria-stabilized zirconia (YSZ) anode matrix. The anode was prepared by impregnating the sintered porous YSZ matrix with a nitrate aqueous containing La3+, Sr2+, Cr3+, Fe3+, Ni2+ and urea. The formed anode exhibited high surface area and porosity, and had fast path for the transportation of oxygen ion and electron, as well as resulting in high three-phase boundaries (TPBs). Single-chamber fuel cell test was conducted in a methane-oxygen gas mixture using an YSZ membrane as the electrolyte and La0.8Sr0.2MnO3−δ (LSM) as the cathode. The influences of environmental temperature and gas composition on the cell performance were also investigated. Under the optimized gas composition (CH4/O2 = 2/1) and furnace temperature (800 °C) conditions, a maximum power density of 214 mW cm−2 was achieved. The test results demonstrated good cell stability and indicated that the perovskite oxide-based anodes were quite robust with redox cycling.  相似文献   

15.
A microwave-induced monomer gelation and gel combustion synthesis process was successfully developed to synthesize well-dispersed Pr0.35Nd0.35Sr0.3MnO3−δ (PNSM)/YSZ composite cathode powders for tubular solid oxide fuel cells (SOFCs). The thermo-gravimetric (TG) analysis of as-prepared ash indicated the decomposition process of most of metal nitrates during gel combustion. The X-ray diffraction (XRD) pattern of the powders calcined at 1000 °C showed only pure PNSM and YSZ phase. Transmission electron microscopy (TEM) revealed that the morphology of powders was characterized with the YSZ particles enwrapped by fine PNSM particles so that PNSM/YSZ composite powders were much better-dispersed compared with the powders made simply by mechanical mixing process. The cell made from PNSM/YSZ composite powder showed lower cathode ohmic resistance and polarization resistance, and produced higher power density subsequently.  相似文献   

16.
Recently, there is a consensus that a limited performance in direct carbon fuel cell (DCFC) using molten carbonate electrolyte is caused by the limited triple phase boundaries (TPB) formation. In order to solve this problem, we added Gd2O3, a well-known lanthanide oxide material for the improvement of wettability in the Ni anode. As a result, it was clearly shown that the voltage drop level and charge transfer resistance was decreased, and therefore the peak power density was increased by almost two times that of solely Ni anode to reach up to 106.7 mW/cm2 with carbon black and 114.1 mW/cm2 with actual coal fuel. The increased wettability led to the improvement of triple phase boundary (TPB) formation and consequently the enhancement of DCFC performance. While the wettability was increased with oxide content in Ni anode, the proportion of Ni at the surface of anode and the electronic conductivity was gradually decreased. With this reason, the peak power density showed the volcano type change with the amount of Gd2O3 addition. Finally, it was revealed that the optimum composition for the anode was Ni:Gd2O3 = 1:5 in weight ratio.  相似文献   

17.
In this study, a conventional Ni/yttria‐stabilized zirconia (YSZ) anode and a new Cu‐CeO2‐YSZ anode structure were assembled in an attempt to combine the advantages of both structures for use in direct methane solid oxide fuel cells. For this purpose, only a limited region (≤20 μm) of NiO/YSZ was deposited at the boundary of the electrolyte to benefit from the superior catalytic activity of Ni in the cells, while the rest of the cell benefited from the Cu‐CeO2‐YSZ anode structure, which does not cause cracking reactions. First, the effects of different pore formers on the anode skeleton, as well as the interactions of the Ni‐Cu species in the anode skeleton, are discussed. Then, the NiO/YSZ‐interlayer‐containing button cells with different thicknesses (≤20) and different ratios of NiO (40 wt%, 50 wt%, and 60 wt%) were studied. After the examination of the cells, 2 model cells with outstanding performance and 2 additional internal reference cells, conventional Ni/YSZ and Cu‐CeO2‐YSZ, were scaled up, and performance analysis and long‐term stability studies were carried out. As a result, for solid oxide fuel cells with increased carbonization resistance (around 6% performance loss due to carbonization after 100‐hour stability testing) and 86.1% of the initial performance of the conventional Ni/YSZ anode structure, a 15‐μm‐thick 40 wt% NiO/60 wt% YSZ interlayer with a dual layer anode structure is proposed.  相似文献   

18.
A NiO-YSZ/porous YSZ dual-layer hollow fiber with an asymmetric structure was fabricated by a co-spinning-sintering method. A dense YSZ electrolyte film was prepared on NiO-YSZ layer by dip-coating method and calcined at 1450 °C; subsequently a porous cathode was dip-coated on the dense YSZ electrolyte film using LSM-YSZ (in the weight ratio 4:1) ink to fabricate a micro tubular solid oxide fuel cell (MT-SOFC). Cu–CeO2 catalyst was impregnated into the porous YSZ layer to form the second anode composition. The power output of the MT-SOFC with Ni-YSZ/Cu–CeO2-YSZ graded anode was up to 242 mW cm−2 operated at 850 °C using CH4 as fuel and air as oxidant. Little carbon deposition was observed on the double anode using methane as the fuel after 60 h' stable operation.  相似文献   

19.
A palladium-impregnated La0.75Sr0.25Cr0.5Mn0.5O3−δ/yttria-stabilized zirconia (LSCM/YSZ) composite anode is investigated for the direct utilization of methane and ethanol fuels in solid oxide fuel cells (SOFCs). Impregnation of Pd nanoparticles significantly enhances the electrocatalytic activity of LSCM/YSZ composite anodes for the methane and ethanol electrooxidation reaction. At 800 °C, the maximum power density is increased by two and eight times with methane and ethanol fuels, respectively, for a cell with the Pd-impregnated LSCM/YSZ composite anode, as compared with that using a pure LSCM/YSZ anode. No carbon deposition is observed during the reaction of methane and ethanol fuels on the Pd-impregnated LSCM/YSZ composite anode. The results show the promises of nanostructured Pd-impregnated LSCM/YSZ composites as effective anodes for direct methane and ethanol SOFCs.  相似文献   

20.
CO2 methanation was performed over 10 wt%Ni/CeO2, 10 wt%Ni/α-Al2O3, 10 wt%Ni/TiO2, and 10 wt%Ni/MgO, and the effect of support materials on CO2 conversion and CH4 selectivity was examined. Catalysts were prepared by a wet impregnation method, and characterized by BET, XRD, H2-TPR and CO2-TPD. Ni/CeO2 showed high CO2 conversion especially at low temperatures compared to Ni/α-Al2O3, and the selectivity to CH4 was very close to 1. The surface coverage by CO2-derived species on CeO2 surface and the partial reduction of CeO2 surface could result in the high CO2 conversion over Ni/CeO2. In addition, superior CO methanation activity over Ni/CeO2 led to the high CH4 selectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号