首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
LiNi0.6CoxMn0.4−xO2 (x = 0.05, 0.10, 0.15, 0.2) cathode materials are prepared, and their structural and electrochemical properties are investigated using X-ray diffraction (XRD), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), differential scanning calorimetric (DSC) and charge–discharge test. The results show that well-ordering layered LiNi0.6CoxMn0.4−xO2 (x = 0.05, 0.10, 0.15, 0.2) cathode materials are successfully prepared in air at 850 °C. The increase of the Co content in LiNi0.6Mn0.4−xCoxO2 leads to the acceleration of the grain growth, the increase of the initial discharge capacity and the deterioration of the cycling performance of LiNi0.6Mn0.4−xCoxO2. It also leads to the enhancement of the ratio Ni3+/Ni2+ in LiNi0.6CoxMn0.4−xO2, which is approved by the XPS analysis, resulting in the increase of the phase transition during cycling. This is speculated to be main reason for the deteriotion of the cycling performance. All synthesized LiNi0.6CoxMn0.4−xO2 samples charged at 4.3 V show exothermic peaks with an onset temperature of larger than 255 °C, and give out less than 400 J g−1 of total heat flow associated with the peaks in DSC analysis profile, exhibiting better thermal stability. LiNi0.6Co0.05Mn0.35O2 with low Co content and good thermal stability presents a capacity of 156.6 mAh g−1 and 98.5% of initial capacity retention after 50 cycles, showing to be a promising cathode materials for Li-ion batteries.  相似文献   

2.
In this study, nano-crystalline LiCoO2 was coated onto the surface of Li1.05Ni0.35Co0.25Mn0.4O2 powders via sol–gel method. The influence of the coating on the electrochemical behavior of Li1.05Ni0.35Co0.25Mn0.4O2 is discussed. The surface morphology was characterized by transmission electron microscopy (TEM). Nano-crystallized LiCoO2 was clearly observed on the surfaces of Li1.05Ni0.35Co0.25Mn0.4O2. The phase and structural changes of the cathode materials before and after coating were revealed by X-ray diffraction spectroscopy (XRD). It was found that LiCoO2 coated Li1.05Ni0.35Co0.25Mn0.4O2 cathode material exhibited distinct surface morphology and lattice constants. Cyclic voltammetry (2.8–4.6 V versus Li/Li+) shows that the characteristic voltage transitions on cycling exhibited by the uncoated material are suppressed by the 7 wt.% LiCoO2 coating. This behavior implies that LiCoO2 inhibits structural change of Li1.05Ni0.35Co0.25Mn0.4O2 or reaction with the electrolyte on cycling. In addition, the LiCoO2 coating on Li1.05Ni0.35Co0.25Mn0.4O2 significantly improves the rate capability over the range 0.1–4.0C. Comparative data for the coated and uncoated materials are presented and discussed.  相似文献   

3.
The high voltage layered Li[Li0.2Mn0.56Ni0.16Co0.08]O2 cathode material, which is a solid solution between Li2MnO3 and LiMn0.4Ni0.4Co0.2O2, has been synthesized by co-precipitation method followed by high temperature annealing at 900 °C. XRD and SEM characterizations proved that the as prepared powder is constituted of small and homogenous particles (100-300 nm), which are seen to enhance the material rate capability. After the initial decay, no obvious capacity fading was observed when cycling the material at different rates. Steady-state reversible capacities of 220 mAh g−1 at 0.2C, 190 mAh g−1 at 1C, 155 mAh g−1 at 5C and 110 mAh g−1 at 20C were achieved in long-term cycle tests within the voltage cutoff limits of 2.5 and 4.8 V at 20 °C.  相似文献   

4.
The large irreversible capacity loss generally encountered with the high capacity layered oxide solid solutions between layered Li[Li1/3Mn2/3]O2 and LiMO2 (M = Mn, Ni, and Co) has been reduced by blending layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2, which is a solid solution between Li[Li1/3Mn2/3]O2 and Li[Mn1/3Ni1/3Co1/3]O2, with spinel Li4Mn5O12 or LiV3O8. The irreversible capacity loss decreases from 68 to 0 mAh g−1 as the Li4Mn5O12 content increases to 30 wt.% in the Li[Li0.2Mn0.54Ni0.13Co0.13]O2-Li4Mn5O12 composite and the LiV3O8 content increases to 18 wt.% in the Li[Li0.2Mn0.54Ni0.13Co0.13]O2-LiV3O8 composite. The decrease in irreversible capacity loss is due to the ability of Li4Mn5O12 or LiV3O8 to insert the extracted lithium that could not be inserted back into the layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 during the first cycle. The Li[Li0.2Mn0.54Ni0.13Co0.13]O2-LiV3O8 composite with ∼18 wt.% LiV3O8 exhibits a high capacity of ∼280 mAh g−1 with little or no irreversible capacity loss and good cyclability.  相似文献   

5.
The structural changes of the composite cathode made by mixing spinel LiMn2O4 and layered LiNi1/3Co1/3Mn1/3O2 in 1:1 wt% in both Li-half and Li-ion cells during charge/discharge are studied by in situ XRD. During the first charge up to ∼5.2 V vs. Li/Li+, the in situ XRD spectra for the composite cathode in the Li-half cell track the structural changes of each component. At the early stage of charge, the lithium extraction takes place in the LiNi1/3Co1/3Mn1/3O2 component only. When the cell voltage reaches at ∼4.0 V vs. Li/Li+, lithium extraction from the spinel LiMn2O4 component starts and becomes the major contributor for the cell capacity due to the higher rate capability of LiMn2O4. When the voltage passed 4.3 V, the major structural changes are from the LiNi1/3Co1/3Mn1/3O2 component, while the LiMn2O4 component is almost unchanged. In the Li-ion cell using a MCMB anode and a composite cathode cycled between 2.5 V and 4.2 V, the structural changes are dominated by the spinel LiMn2O4 component, with much less changes in the layered LiNi1/3Co1/3Mn1/3O2 component, comparing with the Li-half cell results. These results give us valuable information about the structural changes relating to the contributions of each individual component to the cell capacity at certain charge/discharge state, which are helpful in designing and optimizing the composite cathode using spinel- and layered-type materials for Li-ion battery research.  相似文献   

6.
A series of cathode materials with molecular notation of xLi[Li1/3Mn2/3]O2·(1 − x)Li[Ni1/3Mn1/3Co1/3]O2 (0 ≤ x ≤ 0.9) were synthesized by combination of co-precipitation and solid state calcination method. The prepared materials were characterized by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) techniques, and their electrochemical performances were investigated. The results showed that sample 0.6Li[Li1/3Mn2/3]O2·0.4Li[Ni1/3Mn1/3Co1/3]O2 (x = 0.6) delivers the highest capacity and shows good capacity-retention, which delivers a capacity ∼250 mAh g−1 between 2.0 and 4.8 V at 18 mA g−1.  相似文献   

7.
In this work structural and transport properties of layered LiNi1−yzCoyMnzO2 (y = 0.25, 0.35, 0.5 and z = 0.1) cathode materials are presented. In the considered group of oxides, LiNi1−yzCoyMnzO2, there is no clear correlation between electrical conductivity and the a parameter (M-M distance in the octahedra layers). A non-monotonic modification of electrical properties of LixNi0.65Co0.25Mn0.1O2 cathode materials is observed upon lithium deintercalation.  相似文献   

8.
Micro-spherical Ni0.80Co0.15Mn0.05(OH)2 precursors with a narrow size-distribution and high tap-density are prepared successfully by continuous co-precipitation of the corresponding metal salt solutions using NaOH and NH4OH as precipitation and complexing agents. LiNi0.80Co0.15Mn0.05O2 is then prepared as a lithium battery cathode from this precursor by the introduction of LiOH·H2O. The pH and NH3:metal molar ratio show significant effects on the morphology, microstructure and tap-density of the prepared Ni0.80Co0.15Mn0.05(OH)2 and the R values and I(0 0 3)/I(1 0 4) ratio of lithiated LiNi0.80Co0.15Mn0.05O2. Spherical LiNi0.80Co0.15Mn0.05O2 prepared under optimum conditions reveals a hexagonally ordered, layered structure without cation mixing and an initial charging capacity of 176 mAhg−1. More than 91% of the capacity is retained after 40 cycles at the 1 C rate in a cut-off voltage range of 4.3-3.0 V.  相似文献   

9.
Layered Li1+xNi0.30Co0.30Mn0.40O2 (x = 0, 0.05, 0.10, 0.15) materials have been synthesized using citric acid assisted sol-gel method. The materials with excess lithium showed distinct differences in the structure and the charge and discharge characteristics. The rate capability tests were performed and compared on Li1+xNi0.30Co0.30Mn0.40O2 (x = 0, 0.05, 0.10, 0.15) cathode materials. Among these materials, Li1.10Ni0.30Co0.30Mn0.40O2 cathode demonstrated higher discharge capacity than that of the other cathodes. Upon extended cycling at 1C and 8C, Li1.10Ni0.30Co0.30Mn0.40O2 showed better capacity retention when compared to other materials with different lithium content. Li1.10Ni0.30Co0.30Mn0.40O2 exhibited 93 and 90% capacity retention where as Li1.05Ni0.30Co0.30Mn0.40O2, Li1.15Ni0.30Co0.30Mn0.40O2, and Li1.00Ni0.30Co0.30Mn0.40O2 exhibited only 84, 71, and 63% (at 1C), and 79, 66 and 40% (at 10C) capacity retention, respectively, after 40 cycles. The enhanced high rate cycleability of Li1.10Ni0.30Co0.30Mn0.40O2 cathode is attributed to the improved structural stability due to the formation of appropriate amount of Li2MnO3-like domains in the transition metal layer and decreased Li/Ni disorder (i.e., Ni content in the Li layer).  相似文献   

10.
In this paper we compare the behavior of LiNi0.5Mn0.5O2, LiNi0.33Mn0.33Co0.33O2 (NMC) and LiNi0.4Mn0.4Co0.2O2 as cathode materials for advanced rechargeable Li-ion batteries. These materials were prepared by a self-combustion reaction (SCR) from the metal nitrates and sucrose, followed by calcination at elevated temperatures. The temperature and duration of calcination enabled the adjustment of the average particle size and size distribution. It was established that the annealing temperature (700–900 °C) of the as-prepared oxides influences strongly the crystallite and particle size, the morphology of the material, and the electrochemical performance of electrodes in Li-cells. Capacities up to 190, 180 and 170 mAh g−1 could be obtained with Li[NiMn]O2, LiNi0.4Mn0.4Co0.2O2 and LiNi0.33Mn0.33Co0.33O2, respectively. In terms of rate capability, the order of these electrodes is NMC < LiNi0.4Mn0.4Co0.2O2 ? Li[NiMn]O2. Many hundreds of cycles at full DOD could be obtained with Li[NiMn]O2 and NMC electrodes in Li-cells, at room temperature. All of these materials develop a unique surface chemistry that leads to their passivation and stabilization in standard electrolyte solutions (alkyl carbonates/LiPF6). The surface chemistry was studied by FTIR, XPS and Raman spectroscopy and is discussed herein.  相似文献   

11.
Lithium-ion batteries have started replacing the conventional aqueous nickel-based battery systems in space applications, such as planetary landers, rovers, orbiters and satellites. The reasons for such widespread use of these batteries are the savings in mass and volume of the power subsystems, resulting from their high gravimetric and volumetric energy densities, and their ability to operate at extreme temperatures. In our pursuit to further enhance the specific energy as well as low-temperature performance of Li-ion batteries, we have been investigating various layered lithiated metal oxides, e.g., LiCoO2, LiNi0.8Co0.2 and LiNi0.8Co0.15Al0.05O2, as well as different low-temperature electrolytes, including ternary and quaternary carbonate mixtures with various co-solvents. In this paper, we report our recent studies on Li1+x(Co1/3Ni1/3Mn1/3)1−xO2 cathodes, combined with three different low-temperature electrolytes, i.e.: (1) 1.0 M LiPF6 in EC:EMC (20:80), (2) 1.2 M LiPF6 in EC:EMC (20:80) and (3) 1.2 M LiPF6 in EC:EMC (30:70). Electrical performance characteristics were determined in laboratory glass cells at different discharge rates and different temperatures. Further, individual electrode kinetics of both Li1+x(Co1/3Ni1/3Mn1/3)1−xO2 cathodes and MCMB graphite anodes were determined at different temperatures, using dc micropolarization, Tafel polarization and electrochemical impedance spectroscopy (EIS). Analysis of these data has led to interesting trends relative to the effects of solvent composition and salt concentration, on the electrical performance and on the kinetics of cathode and anode.  相似文献   

12.
Submicron-sized LiNi1/3Co1/3Mn1/3O2 cathode materials were synthesized using a simple self-propagating solid-state metathesis method with the help of ball milling and the following calcination. A mixture of Li(ac)·2H2O, Ni(ac)2·4H2O, Co(ac)2·4H2O, Mn(ac)2·4H2O (ac = acetate) and excess H2C2O4·2H2O was used as starting material without any solvent. XRD analyses indicate that the LiNi1/3Co1/3Mn1/3O2 materials were formed with typical hexagonal structure. The FESEM images show that the primary particle size of the LiNi1/3Co1/3Mn1/3O2 materials gradually increases from about 100 nm at 700 °C to 200–500 nm at 950 °C with increasing calcination temperature. Among the synthesized materials, the LiNi1/3Co1/3Mn1/3O2 material calcined at 900 °C exhibits excellent electrochemical performance. The steady discharge capacities of the material cycled at 1 C (160 mA g−1) rate are at about 140 mAh g−1 after 100 cycles in the voltage range 3–4.5 V (versus Li+/Li) and the capacity retention is about 87% at the 350th cycle.  相似文献   

13.
Structural changes and their relationship with thermal stability of charged Li0.33Ni1/3Co1/3Mn1/3O2 cathode samples have been studied using time-resolved X-ray diffraction (TR-XRD) in a wide temperature from 25 to 600 °C with and without the presence of electrolyte in comparison with Li0.27Ni0.8Co0.15Al0.05O2 cathodes. Unique phase transition behavior during heating is found for the Li0.33Ni1/3Co1/3Mn1/3O2 cathode samples: when no electrolyte is present, the initial layered structure changes first to a LiM2O4-type spinel, and then to a M3O4-type spinel and remains in this structure up to 600 °C. For the Li0.33Ni1/3Co1/3Mn1/3O2 cathode sample with electrolyte, additional phase transition from the M3O4-type spinel to the MO-type rock salt phase takes place from about 400 to 441 °C together with the formation of metallic phase at about 460 °C. The major difference between this type of phase transitions and that for Li0.27Ni0.8Co0.15Al0.05O2 in the presence of electrolyte is the delayed phase transition from the spinel-type to the rock salt-type phase by stretching the temperature range of spinel phases from about 20 to 140 °C. This unique behavior is considered as the key factor of the better thermal stability of the Li1−xNi1/3Co1/3Mn1/3O2 cathode materials.  相似文献   

14.
The spherical Li[Ni1/3Co1/3Mn1/3]O2 powders with appropriate porosity, small particle size and good particle size distribution were successfully prepared by a slurry spray drying method. The Li[Ni1/3Co1/3Mn1/3]O2 powders were characterized by XRD, SEM, ICP, BET, EIS and galvanostatic charge/discharge testing. The material calcined at 950 °C had the best electrochemical performance. Its initial discharge capacity was 188.9 mAh g−1 at the discharge rate of 0.2 C (32 mA g−1), and retained 91.4% of the capacity on going from 0.2 to 4 C rate. From the EIS result, it was found that the favorable electrochemical performance of the Li[Ni1/3Co1/3Mn1/3]O2 cathode material was primarily attributed to the particular morphology formed by the spray drying process which was favorable for the charge transfer during the deintercalation and intercalation cycling.  相似文献   

15.
In this work structural and transport properties of layered Li1+x(Mn1/3Co1/3Ni1/3)1−xO2 oxides (x = 0; 0.03; 0.06) prepared by a “soft chemistry” method are presented. The excessive lithium was found to significantly improve transport properties of the materials, a corresponding linear decrease of the unit cell parameters was observed. The electrical conductivity of Li1.03(Mn1/3Co1/3Ni1/3)0.97O2 composition was high enough to use this material in a form of a pellet, without any additives, in lithium batteries and characterize structural and transport properties of deintercalated Li1.03−y(Mn1/3Co1/3Ni1/3)0.97O2 compounds. For deintercalated samples a linear increase of the lattice parameter c together with a linear decrease of the parameter a with the increasing deintercalation degree occurred, but only up to 0.4-0.5 mol of extracted lithium. Further deintercalation showed a reversal of the trend. Electrical conductivity measurements performed of Li1.03−y(Mn1/3Co1/3Ni1/3)0.97O2 samples (y = 0.1; 0.3; 0.5; 0.6) showed an ongoing improvement, almost two orders of magnitude, in relation to the starting composition. Additionally, OCV measurements, discharge characteristics and lithium diffusion coefficient measurements were performed for Li/Li+/Li1.03−y(Mn1/3Co1/3Ni1/3)0.97O2 cells.  相似文献   

16.
Prospective positive-electrode (cathode) materials for a lithium secondary battery, viz., Li[Li0.2Ni0.2−x/2Mn0.6−x/2Crx]O2 (x = 0, 0.02, 0.04, 0.06, 0.08), were synthesized using a solid-state pyrolysis method. The structural and electrochemical properties were examined by means of X-ray diffraction, cyclic voltammetry, SEM and charge–discharge tests. The results demonstrated that the powders maintain the α-NaFeO2-type layered structure regardless of the chromium content in the range x ≤ 0.08. The Cr doping of x = 0.04 showed improved capacity and rate capability comparing to undoped Li[Li0.2Ni0.2Mn0.6]O2. ac impedance measurement showed that Cr-doped electrode has the lower impedance value during cycling. It is considered that the higher capacity and superior rate capability of Cr-doping samples would be ascribed to the reduced resistance of the electrode during cycling.  相似文献   

17.
Surface modifications of electrode materials can improve the electrochemical and thermal properties of cathodes for use in lithium batteries. In this study, AlF3-coated LiCoO2 and AlF3-coated Li[Ni1/3Co1/3Mn1/3]O2 cathode materials are blended, as both have the same crystal structure and exhibit similar electrochemical properties. The composite electrodes exhibit high discharge capacities of 180-188 mAh g−1 in a voltage range of 3.0-4.5 V at room temperature. The capacity retention of the composite electrode is greater than 95% of the initial capacity after 50 cycles. The thermal stability of these composite electrodes is greatly improved because of the superior thermal stability of AlF3-coated Li[Ni1/3Co1/3Mn1/3]O2. The blended AlF3-coated LiCoO2 and AlF3-coated Li[Ni1/3Co1/3Mn1/3]O2 electrode shows two exothermic peaks, one at 227 °C from AlF3-coated LiCoO2 and another at 277 °C from AlF3-coated Li[Ni1/3Co1/3Mn1/3]O2, accompanied by significantly reduced exothermic heat generation.  相似文献   

18.
Micro-scale core-shell structured Li[(Ni1/3Co1/3Mn1/3)0.8(Ni1/2Mn1/2)0.2]O2 powders for use as cathode material are synthesized by a co-precipitation method. To protect the core material Li[Ni1/3Co1/3Mn1/3]O2 from structural instability at high voltage, a Li[Ni1/2Mn1/2]O2 shell, which provides structural and thermal stability, is used to encapsulate the core. A mixture of the prepared core-shell precursor and lithium hydroxide is calcined at 770 °C for 12 h in air. X-ray diffraction studies reveal that the prepared material has a typical layered structure with an space group. Spherical morphologies with mono-dispersed powders are observed in the cross-sectional images obtained by scanning electron microscopy. The core-shell Li[(Ni1/3Co1/3Mn1/3)0.8(Ni1/2Mn1/2)0.2]O2 electrode has an excellent capacity retention at 30 °C, maintaining 99% of its initial discharge capacity after 100 cycles in the voltage range of 3-4.5 V. Furthermore, the thermal stability of the core-shell material in the highly delithiated state is improved compared to that of the core material. The resulting exothermic onset temperature appear at approximately 272  °C, which is higher than that of the highly delithiated Li[Ni1/3Co1/3Mn1/3]O2 (261 °C).  相似文献   

19.
We investigated the effect of CO2 on layered Li1+zNi1−xyCoxMyO2 (M = Al, Mn) cathode materials for lithium ion batteries which were prepared by solid-state reactions. Li1+zNi(1−x)/2CoxMn(1−x)/2O2 (Ni/Mn mole ratio = 1) singularly exhibited high storage stability. On the other hand, Li1+zNi0.80Co0.15Al0.05O2 samples were very unstable due to CO2 absorption. XPS and XRD measurements showed the reduction of Ni3+ to Ni2+ and the formation of Li2CO3 for Li1+zNi0.80Co0.15Al0.05O2 samples after CO2 exposure. SEM images also indicated that the surfaces of CO2-treated samples were covered with passivation films, which may contain Li2CO3. The relationship between CO2-exposure time and CO32− content suggests that there are two steps in the carbonation reactions; the first step occurs with the excess Li components, Li2O for example, and the second with LiNi0.80Co0.15Al0.05O2 itself. It is well consistent with the fact that the discharge capacity was not decreased and the capacity retention was improved until the excess lithium is consumed and then fast deterioration occurred.  相似文献   

20.
The Ni-rich precursor powders with spherical shape and filled morphologies were prepared by spray pyrolysis from the spray solution with citric acid, ethylene glycol and a drying control chemical additive. The precursor powders with controlled morphologies formed the LiNi0.8Co0.15Mn0.05O2 cathode powders with spherical shape and fine size by solid-state reaction with lithium hydroxide. However, the cathode powders prepared from the spray solution without additives had irregular morphologies and were large in size. The precursor powders with hollow and porous morphologies formed cathode powders with irregular and aggregated morphologies. The composition ratios of the nickel, cobalt and manganese components were maintained in the as-prepared, precursor and cathode powders. The initial discharge capacity of the LiNi0.8Co0.15Mn0.05O2 cathode powders with spherical shape and fine size tested at a temperature of 55 °C under a constant current density of 0.5 C was 215 mAh g−1. The discharge capacity of the LiNi0.8Co0.15Mn0.05O2 cathode powders decreased to 81% of the initial value after 30 cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号