首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three aspects of producing hydrogen via renewable electricity sources are analyzed to determine the potential for solar and wind hydrogen production pathways: a renewable hydrogen resource assessment, a cost analysis of hydrogen production via electrolysis, and the annual energy requirements of producing hydrogen for refueling. The results indicate that ample resources exist to produce transportation fuel from wind and solar power. However, hydrogen prices are highly dependent on electricity prices. For renewables to produce hydrogen at $2 kg−1, using electrolyzers available in 2004, electricity prices would have to be less than $0.01 kWh−1. Additionally, energy requirements for hydrogen refueling stations are in excess of 20 GWh/year. It may be challenging for dedicated renewable systems at the filling station to meet such requirements. Therefore, while plentiful resources exist to provide clean electricity for the production of hydrogen for transportation fuel, challenges remain to identify optimum economic and technical configurations to provide renewable energy to distributed hydrogen refueling stations.  相似文献   

2.
In this study, we present a comparative environmental impact assessment of possible hydrogen production methods from renewable and non-renewable sources with a special emphasis on their application in Turkey. It is aimed to study and compare the performances of hydrogen production methods and assess their economic, social and environmental impacts, The methods considered in this study are natural gas steam reforming, coal gasification, water electrolysis via wind and solar energies, biomass gasification, thermochemical water splitting with a Cu–Cl and S–I cycles, and high temperature electrolysis. Environmental impacts (global warming potential, GWP and acidification potential, AP), production costs, energy and exergy efficiencies of these eight methods are compared. Furthermore, the relationship between plant capacity and hydrogen production capital cost is studied. The social cost of carbon concept is used to present the relations between environmental impacts and economic factors. The results indicate that thermochemical water splitting with the Cu–Cl and S–I cycles become more environmentally benign than the other traditional methods in terms of emissions. The options with wind, solar and high temperature electrolysis also provide environmentally attractive results. Electrolysis methods are found to be least attractive when production costs are considered. Therefore, increasing the efficiencies and hence decreasing the costs of hydrogen production from solar and wind electrolysis bring them forefront as potential options. The energy and exergy efficiency comparison study indicates the advantages of biomass gasification over other methods. Overall rankings show that thermochemical Cu–Cl and S–I cycles are primarily promising candidates to produce hydrogen in an environmentally benign and cost-effective way.  相似文献   

3.
At present, hydrogen is used mainly in a chemical industry for production of ammonia and methanol. In the near future, hydrogen will become a significant fuel which can solve the local problems connected with an air quality. Because the hydrogen is most widespread component on the Earth, it can be obtained from a number of sources, both renewable and non-renewable, moreover, by various processes. Pure hydrogen can be acquired by the energy-demanding electrolysis of water. Global production has so far been dominated by hydrogen production from fossil fuels, with the most significant contemporary technologies being the reforming of hydrocarbons, pyrolysis and co-pyrolysis. In the near future, biological method can be used.  相似文献   

4.
5.
In this paper, a new renewable energy-based cogeneration system for hydrogen and electricity production is developed. Three different methods for hydrogen production are integrated with Rankine cycle for electricity production using solar energy as an energy source. In addition, a simple Rankine cycle is utilized for producing electricity. This integrated system consists of solar steam reforming cycle using molten salt as a heat carrier, solar steam reforming cycle using a volumetric receiver reactor, and electrolysis of water combined with the Rankine cycle. These cycles are simulated numerically using the Engineering Equation Solver (EES) based on the thermodynamic analyses. The overall energetic and exergetic efficiencies of the proposed system are determined, and the exergy destruction and entropy generation rates of all subcomponents are evaluated. A comprehensive parametric study for evaluating various critical parameters on the overall performance of the system is performed. The study results show that both energetic and exergetic efficiencies of the system reach 28.9% and 31.1%, respectively. The highest exergy destruction rates are found for the steam reforming furnace and the volumetric receiver reforming reactor (each with about 20%). Furthermore, the highest entropy generation rates are obtained for the steam reforming furnace and the volumetric receiver reforming reactor, with values of 174.1 kW/K and 169.3 kW/K, respectively. Additional parametric studies are undertaken to investigate how operating conditions affect the overall system performance. The results report that 60.25% and 56.14% appear to be the highest exergy and energy efficiencies at the best operating conditions.  相似文献   

6.
New processes under development for producing hydrogen have been assessed using a life cycle methodology and compared to conventional ones. The aim of this paper is to determine the main obstacles to be beaten or the critical aspects to be addressed to ensure the feasibility of these processes. Water photosplitting, solar two-step thermochemical cycles and automaintained methane decomposition with different lay-outs were studied. They have been compared to methane steam reforming with CCS and electrolysis with different electricity sources.  相似文献   

7.
Battery electric vehicles (BEVs) and fuel cell electric vehicles (FCEVs) have been identified as two electromobility options which can help to achieve GHG emission reduction targets in the transport sector. However, both options will also impact the future energy system characterized by integration of various demand sectors and increasing intermittent power generation. The objective of this paper is to examine the optimal mix of both propulsion systems and to analyze the cost for renewable fuel supply. We propose a generic approach for dimensioning of fast charging and hydrogen refueling stations and optimization of the fuel supply system. The model is applied in a case study for passenger cars on German highways. The results indicate that a parallel build-up of stations for both technologies does not increase the overall costs. Moreover, the technology combination is also an optimal solution from the system perspective due to synergetic use of hydrogen but limited efficiency losses. Hence, BEVs and FCEVs should jointly contribute to the decarbonization of the future energy system.  相似文献   

8.
In this work, the technical and economical feasibility for implementing a hypothetical electrolytic hydrogen production plant, powered by electrical energy generated by alternative renewable power sources, wind and solar, and conventional hydroelectricity, was studied mainly trough the analysis of the wind and solar energy potentials for the northeast of Brazil. The hydrogen produced would be exported to countries which do not presently have significant renewable energy sources, but are willing to introduce those sources in their energy system. Hydrogen production was evaluated to be around 56.26 × 106 m3 H2/yr at a cost of 10.3 US$/kg.  相似文献   

9.
PEM electrolysis for production of hydrogen from renewable energy sources   总被引:4,自引:0,他引:4  
Frano Barbir   《Solar Energy》2005,78(5):661-669
PEM electrolysis is a viable alternative for generation of hydrogen from renewable energy sources. Several possible applications are discussed, including grid independent and grid assisted hydrogen generation, use of an electrolyzer for peak shaving, and integrated systems both grid connected and grid independent where electrolytically generated hydrogen is stored and then via fuel cell converted back to electricity when needed. Specific issues regarding the use of PEM electrolyzer in the renewable energy systems are addressed, such as sizing of electrolyzer, intermittent operation, output pressure, oxygen generation, water consumption and efficiency.  相似文献   

10.
Wastewater treatment is essential to shield the environment. The production of H2 is substantial for prospering its applications in diversified sectors; hence the study of wastewater treatment for H2 production is accomplished. Various technologies have been developed and studied considering the potential of wastewater to generate hydrogen-rich gas. These technologies have different mechanisms, diversified setups, and processes. Perhaps these technologies are proven to be exceptional exposures for hydrogen production. Fortunately, a valuable contribution to the environment and the H2 economy is that some technological processes have been promoted to synthesize H2 from lab scale to pilot scale. Contemplating such comprehensive exposure to H2 synthesis from wastewater, the critical information of eight emerging technologies, including their mechanism and reaction parameters influencing the process, pros, cons, and future developmental scopes, are described in this review by classifying them into three different classes, namely light-dependent technologies, light-independent technologies, and other technologies.  相似文献   

11.
The electrochemical production of hydrogen (H2) from liquid methanol in acidic aqueous media was investigated in a proton exchange membrane (PEM) electrolyser, comprising a two-compartment glass cell with a membrane electrode assembly (MEA) composed of a Nafion® 117 membrane and gas diffusion electrodes (GDE). Methanol electrolysis was studied at concentrations ranging from 0 to 16 M, where 0 M corresponds to water electrolysis. The influence of catalysts (Pt and Pt–Ru), catalyst support (C or black), operating temperatures (23, 50 and 75 °C) and operating modes (dry and wet cathode) were evaluated in the static mode. A theoretical thermodynamic analysis of the system was done as a function of temperature. The limiting current densities, kinetic parameters, including the Tafel slopes and current exchange density, and apparent activation energies were determined.  相似文献   

12.
The goal that the international community has set itself is to reduce greenhouse gas (GHG) emissions in the short/medium-term, especially in Europe that committed itself to reducing GHG emissions to 80–95% below 1990 levels by 2050. Renewable energies play a fundamental role in achieving this objective. In this context, the policies of the main industrialized countries of the world are being oriented towards increasing the shares of electricity produced from renewable energy sources (RES).In recent years, the production of renewable energy has increased considerably, but given the availability of these sources, there is a mismatch between production and demand. This raises some issues as balancing the electricity grid and, in particular, the use of surplus energy, as well as the need to strengthen the electricity network.Among the various new solutions that are being evaluated, there are: the accumulation in batteries, the use of compressed air energy storage (CAES) and the production of hydrogen that appears to be the most suitable to associate with the water storage (pumped hydro). Concerning hydrogen, a recent study highlights that the efficiencies of hydrogen storage technologies are lower compared to advanced lead acid batteries on a DC-to-DC basis, but “in contrast […] the cost of hydrogen storage is competitive with batteries and could be competitive with CAES and pumped hydro in locations that are not favourable for these technologies” (Moliner et al., 2016) [1].This shows that, once the optimal efficiency rate is reached, the technologies concerning the production of hydrogen from renewable sources will be a viable and competitive solution. But, what will be the impact on the energy and fuel markets? The production of hydrogen through electrolysis will certainly have an important economic impact, especially in the transport sector, leading to the creation of a new market and a new supply chain that will change the physiognomy of the entire energy market.  相似文献   

13.
The increasing demand for H2 for heavy oil upgrading, desulfurization and upgrading of conventional petroleum, and for production of ammonium, in addition to the projected demand for H2 as a transportation fuel and portable power, will require H2 production on a massive scale. Increased production of H2 by current technologies will consume greater amounts of conventional hydrocarbons (primarily natural gas), which in turn will generate greater greenhouse gas emissions. Production of H2 from renewable sources derived from agricultural or other waste streams offers the possibility to contribute to the production capacity with lower or no net greenhouse gas emissions (without carbon sequestration technologies), increasing the flexibility and improving the economics of distributed and semi-centralized reforming. Electrolysis, thermocatalytic, and biological production can be easily adapted to on-site decentralized production of H2, circumventing the need to establish a large and costly distribution infrastructure. Each of these H2 production technologies, however, faces technical challenges, including conversion efficiencies, feedstock type, and the need to safely integrate H2 production systems with H2 purification and storage technologies.  相似文献   

14.
In this study, a hybrid system consisted of 10 kW wind and 1 kWp PV array is built to meet the load demand of a raise chucker partridge raising facility by renewable energy sources. The facility has an average energy consumption of about 20.33 kWh/day, with a peak demand of 2.4 kW. The solar radiation data and wind data of the region are analyzed for sizing of the renewable energy system. The performance of each alternative system is examined in terms of energy efficiency, and H2 production capacity of the hybrid system from due to excessive electrical energy is studied. A Matlab-Simulink Software is used for analyzing the system performance. The average range of state of charge varies between 56.6% and 88.3% monthly from April to July. The amount of hydrogen production by excess electricity is 14.4 kg in the month of July, due to the high wind speed and solar radiation. Energy efficiency of the electrolyser is found to be varying between 64% and 70% percent. Energy efficiency of each hybrid system is calculated. The overall energy efficiency of wind-electrolyser system varies between 5% and 14% while the energy efficiency of PV-electrolyser system changes within a narrower range, as between 7.9% to and 8.5%, respectively.  相似文献   

15.
The purpose of this work is to develop and evaluate a mathematical model for the process of hydrogen production in Venezuela, via electrolysis and using hydroelectricity, with a view to using it as an energy vector in rural sectors of the country. Regression models were prepared to estimate the fluctuation of the main variables involved in the process: the production of hydrogen, the efficiency of energy conversion, the cost of hydroelectricity and the cost of the electrolyser. Finally, the proposed model was applied to various different time-horizons and populations, obtaining the cost of hydrogen production in each case. The results obtained are well below those mentioned in the references, owing largely to the low cost of the electricity used, which accounts for around 45%45% of the total cost of the system.  相似文献   

16.
AbstractFor the European Union's Member States 2001/77/EC Directive on the promotion of electricity produced from renewable energy sources in the internal electricity market determined targets for 2010 of 21% share of electricity from renewable energy sources in total electricity consumption. Particular Member States adopted different measures for development of renewable and in consequence they achieved different results. Poland, being Member State of the EU since 2004 has accepted target of 7.5% for electricity generated from renewable energy sources until 2010. Currently, in this decade, new 2009/28/EC Directive on the promotion of the use of energy from renewable sources plays significant role in development of renewable energy sources. Directive set new target for 2020. Nowadays is a time for summary and assessment of results fulfilling Directives and monitor progress of new targets. Article presents measures implemented for renewable source energy development, also current state and perspectives of using of renewable energy sources in Poland and in the EU.  相似文献   

17.
This article provides a critical discussion of prospects of solar thermal hydrogen production in terms of technological and economic potentials and their possible role for a future hydrogen supply. The study focuses on solar driven steam methane reforming, thermochemical cycles, high temperature water electrolysis and solar methane cracking. Development status and technological challenges of the processes and objectives of ongoing research are described. Estimated hydrogen production costs are shown in comparison to other options. A summary of current discussions and today's scenarios of future use of hydrogen as an energy carrier and a brief overview on the development status of end-use technologies characterise uncertainties whether hydrogen could emerge as important energy carrier until 2050. Another focus is on industrial hydrogen demand in areas with high direct solar radiation which may be the main driver for the further development of solar thermal hydrogen production processes in the coming decades.  相似文献   

18.
Hydrogen technologies driven by renewable energy sources (RES) represent an attractive energy solution to ensure environmental sustainability. In this paper, a decision support system for the hydrogen exploitation is presented, focusing on some specific planning aspects. In particular, the planning aspects regard the selection of locations with high hydrogen production mainly based on the use of solar and wind energy sources. Four modules were considered namely, the evaluation of the wind and solar potentials, the analysis of the hydrogen potential, the development of a regional decision support module and a last module that regards the modelling of a hybrid onsite hydrogen production system. The overall approach was applied to a specific case study in Liguria region, in the north of Italy.  相似文献   

19.
In this paper, some potential sustainable hydrogen production options are identified and discussed. There are natural resources from which hydrogen can be extracted such as water, fossil hydrocarbons, biomass and hydrogen sulphide. In addition, hydrogen can be extracted from a large palette of anthropogenic wastes starting with biomass residuals, municipal wastes, plastics, sewage waters etc. In order to extract hydrogen from these resources one needs to use sustainable energy sources like renewables and nuclear. A total of 24 options for sustainable hydrogen production are then identified. Sustainable water splitting is the most important method of hydrogen production. Five sustainable options are discussed to split water, which include electrolysis, high temperature electrolysis, pure and hybrid thermochemical cycles, and photochemical/radiochemical methods. Other 19 methods refer to extraction of hydrogen from other materials than water or in conjunction with water (e.g., coal gasification with CO2 capture and sequestration). For each case the achievable energy and exergy efficiency of the method were estimated based on state of the art literature screening for each involved process. In addition, a range of hydrogen production capacity is determined for each of the option. For a transition period to hydrogen economy nuclear or solar assisted coal gasification and fossil fuel reforming technologies – with efficiencies of 10–55% including CO2 sequestration – should be considered as a viable option. Other “ready to be implemented” technology is hydro-power coupled to alkaline electrolysers which shows the highest hydrogen generation efficiency amongst all electrical driven options with 60–65%. Next generation nuclear reactors as to be coupled with thermochemical cycles have the potential to generate hydrogen with 40–43% energy efficiency (based on LHV of hydrogen) and 35–37% exergy efficiency (based on chemical exergy of hydrogen). Furthermore, recycling anthropogenic waste, including waste heat, waste plastic materials, waste biomass and sewage waters, shows also good potential as a sustainable option for hydrogen production. Biomass conversion to hydrogen is found as potentially the most efficient amongst all studied options in this paper with up to 70% energy efficiency and 65% exergy efficiency.  相似文献   

20.
In this study, four potential methods are identified for geothermal-based hydrogen production, namely, (i) directly from the geothermal steam, (ii) through conventional water electrolysis using the electricity generated from geothermal power plant, (iii) using both geothermal heat and electricity for high temperature steam electrolysis and/or hybrid processes, (iv) using the heat available from geothermal resource in thermochemical processes to disassociate water into hydrogen and oxygen. Here we focus on relatively low-temperature thermochemical and hybrid cycles, due to their greater application possibility, and examine them as a potential option for hydrogen production using geothermal heat. We also present a brief thermodynamic analysis to assess their performance through energy and exergy efficiencies for comparison purposes. The results show that these cycles have good potential and become attractive due to the overall system efficiencies over 50%. The copper–chlorine cycle is identified as a highly promising cycle for geothermal hydrogen production. Furthermore, three types of industrial electrolysis methods, which are generally considered for hydrogen production currently, are also discussed and compared with the above mentioned cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号