首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 322 毫秒
1.
(La0.74Bi0.10Sr0.16)MnO3−δ (LBSM)–(Bi2O3)0.7(Er2O3)0.3(ESB) composite cathodes were fabricated for intermediate-temperature solid oxide fuel cells with Sc-stabilized zirconia as the electrolyte. The performance of these cathodes was investigated at temperatures below 750 °C by AC impedance spectroscopy and the results indicated that LBSM–ESB had a better performance than traditional composite electrodes such as LSM–GDC and LSM–YSZ. At 750 °C, the lowest interfacial polarization resistance was only 0.11 Ω cm2 for the LBSM–ESB cathode, 0.49 Ω cm2 for the LSM–GDC cathode, and 1.31 Ω cm2 for the LSM–YSZ cathode. The performance of the cathode was improved gradually by increasing the ESB content, and the performance was optimal when the amounts of LBSM and ESB were equal in composite cathodes. This study shows that the sintering temperature of the cathode affected performance, and the optimum sintering temperature for LBSM–ESB was 900 °C.  相似文献   

2.
Two-stage buffer n(GaSb)1 − xy (Si2) x (GaAs) y and perfect n(GaSb) layers are grown on an pSi substrate by liquid-phase epitaxy from a tin solution-melt. It is shown that the photosensitivity of the pSi−n(GaSb)1 − xy (Si2) x (GaAs) y structures is in the spectral range 1.0-1.6 eV, and that of the pSi − n (GaSb)1 − xy (Si2) x (GaAs) yn (GaSb) structures is in the range 0.62-1.15 eV. Original Russian Text ? A.S. Saidov, M.S. Saidov, Sh.N. Usmonov, D. Saparov, K.T. Kholikov, 2008, published in Geliotekhnika, 2008, No. 3, pp. 56–58.  相似文献   

3.
Metal-supported solid oxide fuel cells (SOFCs) containing porous 430L stainless steel support, Ni-YSZ anode and YSZ electrolyte were fabricated by tape casting, laminating and co-firing in a reduced atmosphere. (Bi2O3)0.7(Er2O3)0.3–Ag composite cathode was applied by screen printing and in-situ sintering. The polarization resistances of the composite cathode were 1.18, 0.48, 0.18, 0.09 Ω cm2 at 600, 650, 700 and 750 °C, respectively. A promissing maximum power density of 568 mW cm−2 at 750 °C was obtained of the single cell. Short-term stability was measured as well.  相似文献   

4.
This study shows the hydrogen desorption kinetics and reversible hydrogen storage properties of 0.55LiBH4–0.45Mg(BH4)2 melt-infiltrated in different nanoporous carbon aerogels with different BET surface areas of 689 or 2660 m2/g and pore volumes of 1.21 or 3.13 mL/g. These investigations clearly show a significantly improved hydrogen storage capacity after four cycles of hydrogen release and uptake for bulk 0.55LiBH4–0.45Mg(BH4)2 and infiltrated in carbon aerogel and the high surface area scaffold, where 22, 36 and 58% of the initial hydrogen content remain after four cycles of hydrogen release and uptake, respectively. Nanoconfinement in high surface area carbon aerogel appears to facilitate hydrogen release illustrated by release of 13.3 wt% H2 (93%) and only 8.4 wt% H2 (58%) from bulk hydride in the first cycle using the same physical condition. Notably, nanoconfinement also appear to have a beneficial effect on hydrogen uptake, since 8.3 wt% H2 (58%) is released from the high surface area scaffold and only 3.1 wt% H2 (22%) from the bulk sample during the fourth hydrogen release.  相似文献   

5.
This paper investigates a (La0.6Sr0.4)(Co0.2Fe0.8)O3 (LSCF)–Y0.16Zr0.92O1.96 (YSZ)–Gd0.1Ce0.9O2−δ (GDC) dual composite cathode to achieve better cathodic performance compared to an LSM/GDC–YSZ dual composite cathode developed in previous research. To synthesize the structures of the LSCF/GDC–YSZ and LSCF/YSZ–GDC dual composite cathodes, nano-porous composite cathodes containing LSCF, YSZ, and GDC were prepared by a two-step polymerizable complex (PC) method which prevents the formation of YSZ–GDC solid solution. At 800 °C, the electrode polarization resistance of the LSCF/YSZ–GDC dual composite cathode showed to be significantly lower (0.075 Ω cm2) compared to that of a commercial LSCF–GDC cathode (0.195 Ω cm2), a synthesized LSCF/GDC–YSZ dual composite cathode (0.138 Ω cm2), and an LSM/GDC–YSZ dual composite cathode (0.266 Ω cm2) respectively. Moreover, the Ni–YSZ anode-supported single cell containing the LSCF/YSZ–GDC dual composite cathode achieved a maximum power density of 1.24 W/cm2 and showed excellent durability without degradation under a load of 1.0 A/cm2 over 570 h of operation at 800 °C.  相似文献   

6.
Complex hydrides and Metal–N–H-based materials have attracted considerable attention due to their high hydrogen content. In this paper, a novel amide–hydride combined system was prepared by ball milling a mixture of Na2LiAlH6–Mg(NH2)2 in a molar ratio of 1:1.5. The hydrogen storage performances of the Na2LiAlH6–1.5Mg(NH2)2 system were systematically investigated by a series of dehydrogenation/hydrogenation evaluation and structural analyses. It was found that a total of ∼5.08 wt% of hydrogen, equivalent to 8.65 moles of H atoms, was desorbed from the Na2LiAlH6–1.5Mg(NH2)2 combined system. In-depth investigations revealed that the variable milling treatments resulted in the different dehydrogenation reaction pathways due to the combination of Al and N caused by the energetic milling. Hydrogen uptake experiment indicated that only ∼4 moles of H atoms could be reversibly stored in the Na2LiAlH6–1.5Mg(NH2)2 system perhaps due to the formation of AlN and Mg3N2 after dehydrogenation.  相似文献   

7.
Nano composite of Ruddlesden-Popper electrocatalyst-oxygen ionic conductor, (Pr0.9La0.1)2(Ni0.74Cu0.21Nb0.05)O4+δ (PLNCN)-Ce0.9Gd0.1O2?δ (GDC), is developed as composite cathode for intermediate temperature solid oxide fuel cells (IT-SOFCs) via a infiltration way. The electrochemical behavior of PLNCN-GDC nanostructured electrode is assessed with respect to infiltration loading and oxygen partial pressure. The optimized PLNCN loading can improve charge transfer dynamics for electrochemical oxygen reduction reaction, thus promoting cathode performance. Importantly, the encouraging results of single cell highlight high activity and good CO2 tolerance of PLNCN-GDC nanostructured cathode.  相似文献   

8.
In the present work, composite materials of the type (1–x)SrTi0.5Fe0.5O3–δxCe0.8(Sm0.8Sr0.2)0.2O2–δ (with х = 0, 0.25, 0.5, 0.75 and 1) are obtained by the two step solid state technique. Their transport properties are investigated in terms of their usage as mixed ionic-electronic conducting (MIEC) membrane materials for hydrogen production. It is found that, in reducing conditions the composites are characterized by mixed conductivity, which level is controlled by the electrical properties of the prevailing phase. Moreover, at 900 °C and pO2 = 10−18 atm, total conductivity, ambipolar conductivity and oxygen permeability of composites dramatically grow (each of about 500%), when the fluorite component content x increases from 0 to 1. High-conducting and strengthened material 0.5SrTi0.5Fe0.5O3–δ–0.5Ce0.8(Sm0.8Sr0.2)0.2O2–δ is chosen for making tube shaped membranes using the tape rolling method, which are successfully applied for hydrogen production in laboratory scale. The hydrogen flux reached 0.176 ml cm−2 min−1 for x = 1, T = 900 °C and emf = 10 mV.  相似文献   

9.
Epitaxial layers of substitutional solid solution (ZnSe)1−x−y(Si2) x (GaP) y (0.1 ≤x≤ 1, 0≤y≤0.9) on pSi substrates were developed from a limited volume of tin solution-melt using the method of a liquid phase epitaxy. The spectral dependency of photosensitivity of the pSi—n(ZnSe)1xy (Si2) x (Ga.P) y structures was studied and the peaks of photoresponses at energies of photons of 1.6, 1.66, and 1.92 eV at room temperature were discovered. It was shown that the forward-bi as regions of the volt—ampere characteristics of structures under study can be described by the power dependence of −I = I 0 + B · V m with various values of a power index at various values of the voltage applied.  相似文献   

10.
Hydrogen storage properties and mechanisms of the combined Mg(BH4)2–NaAlH4 system were investigated systematically. It was found that during ball milling, the Mg(BH4)2–xNaAlH4 combination converted readily to the mixture of NaBH4 and Mg(AlH4)2 with a metathesis reaction. The post-milled samples exhibited an apparent discrepancy in the hydrogen desorption behavior with respect to the pristine Mg(BH4)2 and NaAlH4. Approximately 9.1 wt% of hydrogen was released from the Mg(BH4)2–2NaAlH4 composite milled for 24 h with an onset temperature of 101 °C, which is lowered by 105 and 139 °C than that of NaAlH4 and Mg(BH4)2, respectively. At initial heating stage, Mg(AlH4)2 decomposed first to produce MgH2 and Al with hydrogen release. Further elevating operation temperatures gave rise to the reaction between MgH2 and Al and the self-decomposition of MgH2 to release more hydrogen and form the Al0.9Mg0.1 solid solution and Mg. Finally, NaBH4 reacted with Mg and partial Al0.9Mg0.1 to liberate all of hydrogen and yield the resultant products of MgAlB4, Al3Mg2 and Na. The dehydrogenated sample could take up ∼6.5 wt% of hydrogen at 400 °C and 100 atm of hydrogen pressure through a more complicated reaction process. The hydrogenated products consisted of NaBH4, MgH2 and Al, indicating that the presence of Mg(AlH4)2 is significantly favorable for reversible hydrogen storage in NaBH4 at moderate temperature and hydrogen pressure.  相似文献   

11.
Two classes of hybrid inorganic–organic proton-conducting membranes consisting of Nafion and either [(ZrO2)·(HfO2)0.25] or [(SiO2)·(HfO2)0.28] nanofiller are investigated to elucidate their relaxations and conductivity mechanism and are labeled [Nafion/(ZrHf)x] and [Nafion/(SiHf)x], respectively. The membranes are studied by dynamic mechanic analysis (DMA) and broadband electric spectroscopy (BES). The latter technique allows a determination of the direct current ionic conductivity (σDC) and the proton diffusion coefficient (DH+)(DH+). Pulse-field-gradient spin-echo nuclear magnetic resonance experiments (PFGSE-NMR) are carried out to determine the water self-diffusion coefficients (DH2O)(DH2O). DH+DH+ and DH2ODH2O are correlated to obtain insight on the conductivity mechanism of the proposed materials. Results indicate that the nanofiller particles play a major role in the proton conduction mechanism of the proposed materials. It is demonstrated that the basic [(ZrO2)·(HfO2)0.25] nanoparticles form Nafion–nanofiller dynamic cross-links with high ionic character. These cross-links improve the mechanical properties and enhance the overall proton conductivity of the membranes at low humidification levels owing to an efficient delocalization of the protons. In [Nafion/(SiHf)x] membranes, the dynamic cross-links occur due to dipole–dipole interactions between the side groups of the Nafion host polymer and the quasi-neutral [(SiO2)·(HfO2)0.28] nanoparticles. These cross-links significantly reduce the delocalization of the protons, which decreases the overall conductivity of materials.  相似文献   

12.
将金属有机骨架MIL-101(Cr)-NH2与CaCl2通过浸渍的方法复合得到MIL-101(Cr)-NH2/CaCl2热化学蓄热复合材料。采用X射线衍射分析仪(XRD)、扫描电子显微镜(SEM)、能谱分析(EDS)、全自动比表面积及孔径分析仪以及同步热分析仪(TG-DSC)等分析了复合材料的表观形貌、盐含量、比表面积和蓄热密度等参数。结果显示,复合材料的盐含量为49%,在30℃、32%湿度下的最大吸水量为0.54 g(H2O)/g(样品),蓄热密度达到了1 204 kJ/kg,并且在经历了17次吸附-解吸循环后,其蓄热密度仅降低了6.5%,表现出优异的循环稳定性,出色的吸附性能表明这一新型复合材料在太阳能蓄热领域具有广阔的应用前景。  相似文献   

13.
Ball milling the mixture of Mg(NH2)2, LiH and NH3BH3 in a molar ratio of 1:3:1 results in the direct liberation of 9.6 wt% H2 (11 equiv. H), which is superior to binary systems such as LiH–AB (6 equiv. H), AB–Mg(NH2)2 (No H2 release) and LiH–Mg(NH2)2 (4 equiv. H), respectively. The overall dehydrogenation is a three-step process in which LiH firstly reacts with AB to yield LiNH2BH3 and LiNH2BH3 further reacts with Mg(NH2)2 to form LiMgBN3H3. LiMgBN3H3 subsequently interacts with additional 2 equivalents of LiH to form Li3BN2 and MgNH as well as hydrogen.  相似文献   

14.
Electrochemical hydrogen storage performances of a La0.75Ce0.25Ni3.80Mn0.90Cu0.30 alloy are improved by adding V0.81Fe0.19 combined with hyper-stoichiometry, and microstructures and electrochemical characteristics of La0.75Ce0.25Ni3.80Mn0.90Cu0.30(V0.81Fe0.19)x (x = 0–0.20) hydrogen storage alloys are investigated. X-ray diffraction and backscattered electron results indicate that all alloys are a LaNi5 phase with a hexagonal CaCu5-type structure and the lattice parameters a, c and cell volume V of the LaNi5 phase decrease with increasing x value. The alloy electrodes keep excellent activation performance with increasing V0.81Fe0.19 content. Maximum discharge capacity of alloy electrodes first increases from 330.2 (x = 0) to 335.4 (x = 0.10) mAh/g, and then decreases to 328.8 mAh/g (x = 0.20) with further increasing x value. The high-rate dischargeability at the discharge current density of 1200 mA/g first increases from 67.2% (x = 0) to 76.7% (x = 0.10), and then decreases to 65.3% (x = 0.20). The cycling capacity retention rate at the 100th cycle increases from 52.3% (x = 0) to 77.9% (x = 0.20), which is mainly ascribed to the improvement of anti-pulverization.  相似文献   

15.
We fabricated a uniquely designed anode-supported-type protonic ceramic fuel cell (PCFC) with a dual-electrolyte layer containing BaCe0.9Y0.1O3−δ (BCY) as the higher-proton-conducting phase and BaZr0.85Y0.15O3−δ (BZY) as the chemically stable protecting phase. In order to overcome the poor sinterability of the BZY electrolytes, which is a critical limitation in making thin and dense dual-electrolyte layers for anode-supported PCFCs, we employed aid-assisted enhanced sintering of BZY by adding 1 mol% of CuO. We also promoted the densification of the BZY layer by utilizing the higher sinterability of BCY that is attached to the top of the BZY layer. By properly adjusting the shrinkage behaviors of both the anode substrate and the dual-electrolyte layers, we were able to fabricate a fairly dense BZY/BCY dual-layer electrolyte with a thickness of less than 20 μm. In this paper, the novel strategies used to fabricate the PCFC based on dual-electrolyte layers are reported.  相似文献   

16.
具有三维网络结构的NASICON型Na3V2(PO4)3材料,由于其稳定的电压平台,较高的理论容量(117 mA·h/g),被视为一种具有良好应用前景的钠离子电池负极材料。采用溶剂热和进一步热处理的方式,获得石墨烯包封Na3V2(PO4)3的复合材料[Na3V2(PO4)3/G],有效提高了Na3V2(PO4)3的电子导电性。在0.01~3.00 V电压区间,0.2 C倍率进行测试时,Na3V2(PO4)3/G复合材料在230圈循环后,其放电比容量保持在100.9 mA·h/g,容量保持率高达68.4%,即使在5 C倍率,其放电比容量仍可达65.2 mA...  相似文献   

17.
To develop a single stage water–gas shift reaction (WGS) catalyst for compact reformers, Pt/CeO2, Pt/ZrO2, and Pt/Ce(1−x)Zr(x)O2 catalysts have been applied for the target reaction. The CeO2/ZrO2 ratio was systematically varied to optimize Pt/Ce(1−x)Zr(x)O2 catalysts. Pt/CeO2 showed the highest turnover frequency (TOF) and the lowest activation energy (Ea) among the catalysts tested in this study. It has been found that the reduction property of the catalyst is more important than the dispersion for a single stage WGS. Pt/CeO2 catalyst also showed stable catalytic performance. Thus, Pt/CeO2 can be a promising catalyst for a single stage WGS for compact reformers.  相似文献   

18.
Porous composite cathodes including (La0.74Bi0.10Sr0.16)MnO3−δ (LBSM) and Bi1.4Er0.6O3 (ESB) were fabricated and characterized using AC impedance spectroscopy. In our earlier work, the growth and aggregation of ESB particles were found in LBSM–ESB composite cathodes. In this study, therefore, two approaches were used to restrain the growth and aggregation of ESB particles. First, the sintering temperature of the composite cathode was reduced by introducing a sintering function layer, which caused a 22% reduction in the initial polarization resistance (R), but the cathode polarization resistance decreased at a rate of 2.15 × 10−4 Ω cm2 h−1 at 700 °C during a period of 100 h. Second, nano-sized Gd-doped ceria powder (CGO) was added to the composite cathode system. Stability improvement was achieved at 10 vol% CGO, and the degradation rate at 700 °C was 4.01 × 10−5 Ω cm2 h−1 during a period of 100 h.  相似文献   

19.
A combined strategy via mixing Mg(BH4)2·6NH3 with ammonia borane (AB) is employed to improve the dehydrogenation properties of Mg(BH4)2·6NH3. The combined system shows a mutual dehydrogenation improvement in terms of dehydrogenation temperature and hydrogen purity compared to the individual components. A further improved hydrogen liberation from the Mg(BH4)2·6NH3–6AB is achieved with the assistance of ZnCl2, which plays a crucial role in stabilizing the NH3 groups and promoting the recombination of NHδ+?HBδ−. Specifically, the Mg(BH4)2·6NH3–6AB/ZnCl2 (with a mole ratio of 1:0.5) composite is shown to release over 7 wt.% high-pure hydrogen (>99 mol%) at 95 °C within 10 min, thereby making the combined system a promising candidate for solid hydrogen storage.  相似文献   

20.
The dehydrogenation/hydrogenation properties of LiBH4-xMg(OH)2 were systematically investigated. The results show that the LiBH4-0.3Mg(OH)2 composite possesses optimal dehydrogenation properties: approximately 9.6 wt% of hydrogen is released via a stepwise reaction with an onset temperature of 100 °C. In the range of 100–250 °C, a chemical reaction between LiBH4 and Mg(OH)2 first occurs to give rise to the generation of LiMgBO3, MgO and H2. From 250 to 390 °C, the newly developed LiMgBO3 reacts with LiBH4 to form MgO, Li3BO3, LiH, B2O3 and Li2B12H12 with hydrogen release. From 390 to 450 °C, the decomposition of LiBH4 and Li2B12H12 proceeds to release additional hydrogen and to form LiH and B. A further hydrogenation experiment indicates that the dehydrogenated LiBH4-0.3Mg(OH)2 sample can take up 4.7 wt% of hydrogen at 450 °C and 100 bar of hydrogen with good cycling stability, which is superior to the pristine LiBH4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号