首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
化学氧化及高级氧化工艺处理废碱液的研究   总被引:3,自引:0,他引:3  
采用均相化学催化氧化及高级氧化两步工艺对石油化工乙烯裂解废碱液中的硫化物、有机物进行了处理研究,结果表明:在反应温度40℃、化学催化氧化反应时间90min、Mn^2 15mg/L、气水比(曝气量)75:1以及高级氧化反应时间120min、H2O2的加入量(H2O2/COD)为0.8等条件下,硫化物的转化率可达96%以上,COD去除率可达78%.BOD5/CODcr的比值可由处理前的0.21升至0.54.  相似文献   

2.
研究了UV/H2O2,UV/O3和UV/H2O2/O3三种高级氧化体系处理乙烯装置所排放废碱液的特点。对于UV/H2O2体系,随着H2O2剂量的增加,COD的去除率以及处理液的可生化性(BOD:COD值)都随之增大,其性能也好于单独的H2O2体系,该体系在最佳条件下,COD的去除率达到68%,BOD/COD值从0.22增大到0.52;对于UV/O3体系,随着O3剂量的增加,COD的去除率及处理液的可生化性(BOD:COD值)也都随之增大,其性能也好于单独的O3体系。该体系在最佳条件下,COD的去除率达到54%,可生化性(BOD/COD值)从0.22增大到0.48;对于UV/H2O2/O3体系,其COD去除率比UV/O3体系高出22.0%。  相似文献   

3.
光催化微O3氧化饮用水中腐殖质研究   总被引:5,自引:0,他引:5  
研究了以光催化微臭氧氧化为主体的光化学激发氧化技术,以粉末状二氧化钛(TiO2)为催化剂,对水中腐殖酸进行了光催化氧化研究.探讨了微量O3对腐殖酸的氧化作用,结果表明利用光催化微臭氧氧化法能有效地去除水中腐殖酸.同时对UV/O3、UV/TiO2/空气、UV/TiO2/O3、UV/TiO2/微O34种不同工艺处理微污染水中腐殖酸的结果进行了比较,结果表明UV/TiO2/空气工艺对微污染水中腐殖酸的去除率最低,UV/TiO2/微O3工艺经2 h处理去除率可达70%以上,接近光催化臭氧氧化处理结果.  相似文献   

4.
采用电生H2O2协同电解絮凝法处理餐饮废水,研究了废水初始浓度、电解时间、电压、电极材料、pH等因素对降解餐饮废水的影响.结果表明,进水CODCr在1200mg/L以内、pH值为中性的餐饮废水,在10V电压、电磁搅拌、曝气条件下,电解15min后,COD去除率在80%以上.该法利用了铝阳极反应生成的絮凝剂Al(OH)3和阴极上电合成的H2O2对有机物的去除作用,同时阳极产生的H^ 与阴极产生的OH^-中和又促进了两极的反应,使有机物降解更彻底.  相似文献   

5.
紫外/过氧化氢对含氮染料废水的处理   总被引:1,自引:0,他引:1  
纺织印染废水的降解主要是针对含氮染料废水的处理,利用UV/H2O2的工艺方法处理含氮活性染料活性黑5号(Reactive B lack 5(RB5))的印染废水,研究染料RB5降解过程中过氧化氢浓度及紫外光强度对染料RB5废水降解程度的影响.结果表明,印染废水的降解分为脱色和分解两步进行.  相似文献   

6.
复合高级氧化法处理聚丙烯酰胺   总被引:8,自引:0,他引:8  
为处理聚驱采油废水中的聚合物,研制出可工业放大的新型多光源化学反应器,并采用O3/H2O2/UV联用技术,于此反应器内对聚丙烯酰胺(PAM)溶液进行降解研究,考察影响降解PAM速率的主要因素.结果表明,该反应体系对PAM有较好的去除率,且在任何特定反应条件下,PAM的降解速率均与PAM的质量浓度成正比.O3与H2O2均有最优投加量,当O3超过最优投加量时,表观速率常数不会有所增加,而H2O2一旦超过最佳投加量,表观速率常数会迅速下降,当H2O2投加量大于27.8 mg/min时,O3/H2O2/UV法降解PAM的表观速率常数甚至低于O3/UV法.并且表观速率常数随光辐射强度的增大而增大,随pH的增大而减小.  相似文献   

7.
UV/H2O2降解水中的有机污染物质,将其矿化为C02和H2O2或降解为易于生物降解的小分子有机物,降解效果受HCO3^-等离子的影响;UV/H2O2系统中H2O2存在一临界投量,由于底物种类和浓度的不同而差异较大;UV/H2O2系统去除饮用水中的有机微污染物,与GAC单元结合,可以极大地缩短和降低反应器中的HRT和H2O2的投量,处理效果与O3/GAC相近,使UV/H2O2高级氧化技术得以经济地应用于工程实践.  相似文献   

8.
采用UV、O3、UV/O3高级氧化法对水中六氯苯(HCB)的降解效果及机理进行了研究,并对结果进行了比较.结果表明,UV本身对HCB的去除贡献率不大,HCB可被O3、UV/O3快速降解,即UVO3UV/O3;UV、O3、UV/O3工艺条件下,提高HCB的初始浓度、不利于HCB的降解,后两种工艺条件下酸性条件下有利于降解反应的进行;无论是UV或O3单独作用还是UV/O3联合作用,HCB的降解满足准一级反应动力学规律,如果体系的pH值基本保持恒定,这种规律就更为明显.根据离子色谱(IC)、GC、GC-MS对六氯苯降解中间产物进行了测定,探讨了UV、O3、UV/O3降解六氯苯的途径和机理.  相似文献   

9.
检测了鲱精DNA水溶液及其经过1%、2%和3%H2O2处理48h的拉曼光谱图.实验结果表明DNA在水溶液中同时具有A、B两种构象,但以B型构象为主.经H2O2处理后,DNA水溶液的A型构象有所增强,碱基堆积程度下降.H2O2对碱基和脱氧核糖几乎没有损伤,对DNA的主链结构也只造成很轻微的损伤.由此可见H2O2本身对DNA的损伤是很小的,只有在外界因素诱发下H2O2经反应生成HO.才会给DNA造成严重损伤.  相似文献   

10.
高级氧化技术降解卤乙酸效果及动力学研究   总被引:1,自引:0,他引:1  
为降低预氯化过程中产生的消毒副产物带来的饮用水不安全性,探讨高级氧化技术降解消毒副产物中的卤乙酸的效果并进行反应动力学分析.结果表明,当紫外光强为1048μW/cm2,双氧水投加量为70 mg/L,UV/H2O2工艺对二氯乙酸去除率为84.58%,紫外光强为183μW/cm2,双氧水投加量为141.51 mg/L,O3累计投加量为5 mg/L,UV/H2O2/O3工艺对二氯乙酸的去除率为80.37%,分析两种工艺的反应动力学规律,试验拟合反应速率k与双氧水投加量的反应动力学方程模型分别为:k=0.0002[H2O2]和k=0.0008[H2O2]0.5403.  相似文献   

11.
阴阳极室同时氧化对煤气废水处理效果的研究   总被引:2,自引:0,他引:2  
在棉布隔膜电解槽中,使用Ti/IrO2/RuO2阳极、自制的碳/聚四氟乙烯(C/PTFE)充氧阴极,研究了电化学催化氧化降解煤气废水的效果.结果表明,在阴极室,C/PTFE充氧阴极通过外界曝气提供的O2在阴极还原产生H2O2,采用电子自旋共振法(ESR)阴极室中检测到羟自由基(HO.)的存在.煤气废水中挥发酚和COD去除率均随电解时间的延长而升高、随电流密度的增加而升高,电解质浓度对煤气废水中挥发酚和COD的去除情况没有明显规律性的影响.煤气废水的降解是在阳极的直接、间接氧化及阴极产生的H2O2、HO.和O2-.自由基的氧化共同作用下完成的,阴、阳极室同时电催化氧化降解煤气废水取得了较好的效果.  相似文献   

12.
Fabrication of Ceramic Composites by Directed Metal Oxidation   总被引:1,自引:0,他引:1  
To explain the growth mechanism of Al2O3/Al Lanxide composites , the dynamics of the directed oxidation of Al-Mg-Si alloys are analyzed. The experimental methods to produce Lanxide composites by directed oxidation of metal melts at high temperatures are presented. The effect of the processing factors on the microstructures and properties of Al2O3/ Al composites and enforced Al2O3/Al composites is also analyzed. Compared with sintering ceramic composites, the advantages of Lanxide process and Lanxide materials are as following : it is a near net shaped process ; the process is very simple ; the microstructures and properties of Lanxide materials can be adjusted ; and this process can be used to infiltrate ceramic fiber or particle preforms.  相似文献   

13.
预处理+生化法+膜处理"的组合工艺是常用的垃圾渗滤液处理工艺,虽然能够快速稳定地削减渗滤液中各类污染物,但产生的渗滤液膜滤浓缩液富集了更高浓度的难降解有机物、盐分和其他无机物,难降解有机物的去除是渗滤液浓缩液处理的难题。以深圳某填埋场垃圾渗滤液膜浓缩液为研究对象,分别研究了三维电氧化、紫外芬顿(UV/Fenton)以及三维电氧化-UV/Fenton-电催化氧化组合工艺对垃圾渗滤液膜浓缩液的处理效果。在实验操作条件下,电氧化2 h,UV-Fenton处理1.5 h,电催化氧化2 h,COD、氨氮、总氮的去除率分别为97.6%、98.8%和93.5%,出水基本满足《生活垃圾填埋场污染控制标准》(GB 16889-2008)直接排放限值要求,每吨垃圾渗滤液膜浓缩液的处理成本为93.2元。  相似文献   

14.
介绍了二氧化钛(TiO2)光催化氧化的机理,阐述了TiO2光催化氧化技术在降解水中有机污染物、无机污染物以及饮用水净化和垃圾渗滤液处理中的研究进展,并对TiO2光催化氧化技术的研究前景进行了展望。由于TiO2化学性质稳定,难溶,无毒,成本低,催化效率高,因此光催化氧化技术在难降解有机物、微污染水等处理中相对于其他传统水处理工艺具有一定的优势,是一种很有发展前途的水处理技术,对太阳能的利用和环境保护有重要的意义,可以预见光催化氧化将成为新型有效的水处理手段。  相似文献   

15.
TiO2光催化氧化技术在水处理中的研究进展   总被引:2,自引:0,他引:2  
介绍了二氧化钛(TiO2)光催化氧化的机理,阐述了TiO2光催化氧化技术在降解水中有机污染物、无机污染物以及饮用水净化和垃圾渗滤液处理中的研究进展,并对TiO2光催化氧化技术的研究前景进行了展望。由于TiO2化学性质稳定,难溶,无毒,成本低,催化效率高,因此光催化氧化技术在难降解有机物、微污染水等处理中相对于其他传统水处理工艺具有一定的优势,是一种很有发展前途的水处理技术,对太阳能的利用和环境保护有重要的意义,可以预见光催化氧化将成为新型有效的水处理手段。  相似文献   

16.
石墨和结合碳的氧化是铝碳耐火材料在使用中损坏的重要原因之一.研究了锰粉在铝碳耐火材料中的行为以及作为抗氧化剂的作用,并与仅添加Si或Al试样的性能相比,添加Mn试样的抗氧化性明显增大,且Mn的含量为3%左右,复合添加Si和Mn试样的抗氧化性均有大大提高.在高温下Mn在含碳材料中能促进易被氧化的石墨边棱活性炭、结合剂残碳形成难被氧化的C-C键结构,使含锰试样抗氧化大大提高,另外在高温下形成的硅酸锰熔体作为一道屏障也起到了延缓或阻止碳氧化的作用.  相似文献   

17.
Al2O3/Ti-Al复合材料的抗高温氧化性研究   总被引:3,自引:0,他引:3  
利用氧对金属Ti、Al粉的部分氧化,原位合成了Ti—Al金属间化合物和氧化铝,从而制备出了Al2O3/Ti—Al复合材料,通过氧化增重实验研究了材料的抗高温氧化性能,发现随着原始配比中Al含量和烧成温度的增加,复合材料的抗高温氧化性能逐渐提高,并借助X衍射和SEM手段对复合材料的组成和显微结构进行了分析,讨论了工艺因素对材料氧化性能产生影响的机理。  相似文献   

18.
采用吸附—混凝—高级氧化法对L—谷氨铣胺废水进行处理,筛选出最佳的混凝条件及氧化条件。实验发现,采用聚合氯化铝(PAC)和阳离子聚丙烯铣胺(PAM)复合混凝L—谷氨铣胺废水,在pH为6.8,PAC与PAM的用量分别为400mg/L和12mg/L时混凝效果较好。混凝后的废水再用H2O2/Fe^2 /UV体系氧化,当pH为3时,采取三次投加方式加入H2O2,紫外灯照射6h,取得了满意的结果,实验表明:采用吸附—混凝—高级氧化法处理L—谷氨铣胺废水是一种行之有效的方法。经该方法处理后的L—谷氨铣胺废水,其COD去除率为99.2%,脱色率达100%,达到了医药行业的废水二级排放标准。  相似文献   

19.
为了建立操作简便、有效的电化学氧化处理氯嘧璜隆废水的工艺方法,采用循环伏安法和恒电流电解法研究了传质因素对氯嘧璜隆在Ti/SnO2-Sb2O3/PbO2阳极电化学氧化降解过程中的影响,并对各种影响传质和氯嘧璜隆降解反应中的因素进行了优化.采用循环伏安和紫外-可见光谱法初步研究了氯嘧璜隆在Ti/SnO2-Sb2O3/PbO2阳极上的电化学氧化机理;采用高效液相色谱法(HPLC)对电解反应过程中c(氯嘧璜隆)进行监测;采用重铬酸钾法对化学需氧量(COD)去除效果进行评价.实验结果证明,废水的性质、电解操作条件、废水传质条件等因素对氯嘧璜隆在Ti/SnO2-Sb2O3/PbO2阳极上的电化学降解都具有显著的影响,同时也证明了采用Ti/SnO2-Sb2O3/PbO2阳极电化学氧化处理含氯嘧璜隆废水的可行性.  相似文献   

20.
用溶液浸渍法制备了TiO2催化剂,并通过实验,系统研究了光源、溶液pH值、外加氧化剂、搅拌等因素对光催化氧化反应的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号