首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
陈刚  姚立纲 《机械设计与制造》2022,373(3):209-213+218
血泵转子高速旋转会造成血细胞出现不同程度的机械损伤,严重时可能危及患者生命,研究血泵流场特性是设计人工心脏泵的关键。以自主研发的章动磁悬浮血泵为例,基于计算流体动力学非定常三维N-S方程,采用标准κ-ε模型、用户自定义函数和动网格技术,模拟分析血泵内部流场情况,探究三维流场内速度、压力以及剪切应力大小及分布规律。建立磁悬浮章动血泵的溶血模型,采用粒子追踪法获取红细胞在血泵内所受剪切应力和暴露时间,预测血泵的溶血特性。研究结果表明血泵内部流动均匀,没有明显的回流和滞流现象,具有良好的血液相容性。研究为磁悬浮章动血泵的进一步优化设计和性能评价提供重要依据。  相似文献   

2.
在满足血泵出口压力的前提下,磁悬浮人工心脏血泵装置的发展主要趋向于小型化和轻型化,并具有良好的血液兼容性和流动性.基于流体动力学分析软件,通过设置血液流场边界条件,采用k-ε湍流模型,对血液流道进行三维建模,同时开展磁悬浮血泵内部流场的数值模拟仿真,分析血泵的速度场和压力场,探索叶轮参数对血泵扬程的影响.结果表明,5片...  相似文献   

3.
摩擦和磨损会导致离心式血泵机械轴承的寿命短、发热量大,易引起血栓和溶血,针对此,提出了一种离心式血泵用混合磁悬浮支承结构。采用数值计算法对血泵用磁悬浮支承进行了磁场分布数值模拟,设计了基于边缘效应的磁悬浮支承结构实验原型样机,搭建了控制系统,并以实验验证了该结构静态悬浮的可行性。研究结果为离心式磁悬浮血泵的结构设计和溶血问题的改善提供了重要依据。  相似文献   

4.
双流道泵内部流场数值模拟及性能预测   总被引:8,自引:0,他引:8  
运用标准κ-ε湍流模式,在双参考系下利用有限控制体积法对臂诺平均Navier—Stokes方程进行数值离散,采用Simple方法求解,对一台双流道泵在不同工况下的内部流动进行了三维数值模拟。根据数值计算的结果分析了泵叶轮和蜗壳内的速度分布和压力分布,并将泵的扬程和效率的计算值与试验值进行了比较.获得了满意的结果。  相似文献   

5.
以后置导叶型轴流通风机为模型,采用CFD方法对风机内部流场进行数值模拟,揭示了其内部流场的基本特征,进行了性能预测;并与其气动性能进行了对比分析。结果表明:采用CFD方法进行性能预测有较高的精度和可靠性,同时可为内部流动优化提供依据。  相似文献   

6.
黄伟  谭建平 《机械制造》2006,44(10):30-32
根据微型轴流式血泵外磁驱动装置的重要组成部分——永磁体的自身特性,基于ANSYS软件建立了有限元模型,合理分析了其所受的载荷和边界奈件,得出了较为准确的分析结论,为整个装置的正常运行提供了可靠的理论依据。  相似文献   

7.
针对传统轴流式磁悬浮血泵存在轴向尺寸偏长,不利于植入问题。提出一种将无刷直流电机与径向磁悬浮轴承集成结构,可有效缩短血泵轴向尺寸;在讨论血泵结构的基础上,重点通过对无轴承直流电机进行理论计算,获得其设计参数,然后采用数值仿真,讨论了电流、位移以及转子位置角对无轴承直流电机径向悬浮力的影响关系。  相似文献   

8.
微型轴流式血泵是目前人工心脏结构研究的热点,外磁驱动是一种新型的血泵驱动方式.该文介绍了以单片机AT89S52为控制单元的血泵外磁驱动系统,该系统具有良好的调速性能和控制性能.还介绍了其硬件设计和软件设计.  相似文献   

9.
射流泵流场三维数值模拟   总被引:1,自引:0,他引:1  
采用商用CFD软件-FLUENT,通过选取Realizable κ-ε双方程紊流模型。Quick离散格式对射流泵内部流场进行数值模拟。该方法的计算结果与现有的实验值基本吻合。表明本计算方法是可行的,可用于射流泵的结构设计及优化。  相似文献   

10.
多级轴流式混输泵内气液两相流的数值计算   总被引:3,自引:0,他引:3  
利用Fluent计算软件在多重参考坐标系下采用欧拉方法的双流体湍流模型计算多级轴流式泵内高含气状态下的三维气液两相流场。通过对绝对流速、叶轮相对流速、压力、气液两相分布及其相间滑移速度矢量的分析,探讨了气液两相介质在泵内的流动规律。通过与泵性能实验结果对比,验证了本文方法对气液两相轴流泵计算分析的有效性。  相似文献   

11.
轴流泵内部流动的数值模拟研究   总被引:2,自引:0,他引:2  
李龙  王泽 《流体机械》2007,35(4):16-18,27
应用三维湍流Navier-Stokes方程、Realzable两方程湍流模型、壁面函数方法及叶轮与导叶间的滑移网格,对轴流泵段的内部流动进行了数值模拟研究,得到不同流量和不同半径处的叶片表面的压力分布特征,发现叶片背面的压力等值线的形状和分布趋势比较稳定,叶片升力面的压力等值线形状和分布趋势变化较大.  相似文献   

12.
近年来,血泵的研究已成为心脏外科和生物医学工程领域关注的焦点,对血泵中血液流动进行流体动力学仿真分析已忧为一种快速、经济的设计手段。本文针对所设计的微型轴流血泵,采用CFD技术,对血泵中的速度、压力、应力等分布进行了仿真分析。研究结果表明血泵中的流体具有非常复杂的流动情况,为了避免流动分离、压力变化过大等情况,减少剪切应力,对血泵叶轮结构提出了相应的改进意见。  相似文献   

13.
混流泵内流场的数值模拟   总被引:5,自引:1,他引:4  
吴治将  赵万勇 《流体机械》2005,33(10):15-19
利用CFO(计算流体力学)软件FLUENT中的修正k-ε紊流模型以及标准SIMPLE算法,对混流泵内部3个典型工况的三维紊流流动进行数值模拟,并与实验值进行比较。通过对混流泵内部流动速度、压力分布的分析,揭示了其内部流动的主要特征,并捕捉到流动冲击、二次流等重要的流动现象,对混流泵的性能与改进提供确实的物理信息。  相似文献   

14.
在SolidWorks软件中建立了螺杆泵定子与转子模型,并成功地进行装配,运用Fluent提供的UDF功能建立描述螺杆泵转子运动的动网格;运用Fluent求解器对螺杆泵腔室内的非定常流动进行数值模拟,得到流场的速度分布、压力分布和应力场;分析流体粘度、转子转速以及螺杆泵偏心距对流场的影响。计算结果表明:当转子要离开定子的两端面时,泵内流场总会出现十分明显的涡流;粘度仅影响速度、压力和应力数值的大小,而对分布规律的影响不大;转子转速对速度分布影响比较大,流场速度随转子转速的增大而增大;此外,偏心距对流场有较大的影响,且偏心距越大流场参数变化幅度越大,这表明偏心距对螺杆泵的稳定性影响很大。  相似文献   

15.
为了探究使用计算流体力学(Computational Fluid Dynamics, CFD)评估离心血泵性能时采用非定常模拟方法的必要性,对美国食品药品监督管理局(Food and Drug Administration, FDA)提供的标准模型进行数值仿真,分别使用定常单坐标系(Single Reference Frame, SRF)与非定常动静区域耦合的滑移网格模拟方法对4个工况进行模拟并与实验结果进行对比。 结果表明,定常SRF预测的泵内速度场与实验结果误差在4%以内;非定常滑移网格的误差为2%以内,且确定系数相较定常SRF平均高0.4。对于溶血系数的计算,两种方法均未给出准确的定量预测。 因此对于血泵流场的计算,非定常滑移网格模型与定常SRF模型相比,有一定的准确度上的提升,但并不明显。  相似文献   

16.
针对我国轴流泵效率普遍偏低的情况,结合轴流泵叶轮轮缘、轮毂处的边界层及间隙流的影响,在传统的升力法模型中引入修正系数,对传统的升力法公式进行改进,得到改进的升力法,应用两种模型完成叶轮叶片的设计,并利用NUMECA软件进行数值模拟,得到采用改进的升力法设计的叶轮叶片表面及轮毂、轮缘处的速度及压力分布均较传统升力法设计的好,设计工况点的效率比采用传统升力法设计的叶轮高2.5%.  相似文献   

17.
单级轴流压气机内部三维流动的数值模拟   总被引:2,自引:1,他引:2  
采用一种快速求解三维粘性流场的计算方法求解轴流压气机的内部流场及全工况特性。该方法采用时间推进法和有限体积差分格式进行求解,对某单级轴流压气机内部流动进行了详细的数值模拟,计算结果与试验结果吻合良好,同时对压气机内部流场进行了分析。  相似文献   

18.
利用CFD软件Fluent对多级导叶式清水离心泵的内部流场进行了数值模拟,得出了叶轮及导叶内部流道的速度和压力分布规律,并发现了叶轮进口回流,出口的二次流动特征等叶轮内部流动的细节,导叶出口区产生了一个低压区等流动特征。然后根据自编计算软件利用计算得到的速度场数据计算出泵的扬程、功率、效率和流量之间的关系曲线,并与试验数据进行了比较。结果表明:在设计工况附近,预测值与试验值吻合较好,在其它工况点,特别是小流量工况点,误差较大。  相似文献   

19.
空调风扇数值模拟及流道结构的优化   总被引:1,自引:0,他引:1  
李剑波  吴克启 《流体机械》2006,34(9):21-23,34
用三维流场计算软件,对空调用轴流风扇的内部流动特性进行厂数值模拟计算,讨论了不同的简化模型对计算结果的影响。初步分析了风扇内部的流场结构,旨在为降低噪声设计提供依据:性能试验结果验证了CFD计算的有效性,研究表明,流道结构的合理调整,可以提高风量并有利于噪声的降低.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号