首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
对通过改善界面状态提高金刚石-Cu复合材料导热性的研究进行综述。为了改善金刚石与Cu的界面状态,提高二者的结合力,研究者们已经做了大量的工作。从加强界面结合力入手:一种方法是通过金刚石颗粒表面涂覆金属层(即表面金属化)来提高金刚石与Cu的亲和力,在同等条件下,采用表面镀Cu的金刚石与没有镀Cu的金刚石相比,所制备的金刚石-Cu复合材料的导热性增加了近3倍;另一种方法是通过在Cu中添加元素,形成中间碳化物层来增强界面结合力,减小热阻,研究者们分别添加W、Ti、Cr等活性元素,都不同程度地提高了Cu-金刚石复合材料的导热性能。或综合两种方法,同时对基体和增强体进行一定的预处理。其次,减少界面数量,增大金刚石颗粒粒径,尽可能实现并联导热模型以构成复合材料的各相的三维连通,应该都是发掘高导热复合材料导热性能的有效方法。  相似文献   

2.
Cr元素对Diamond/Cu复合材料界面结构及热导性能的影响   总被引:3,自引:1,他引:2  
采用预制件制备,压力浸渗金属工艺制备Diamond/Cu复合材料,分析了Cu基体合金化及金刚石颗粒表面金属化情况下,Cr元素对复合材料界面结构和热性能的影响。结果表明,Diamond/Cu-Cr复合材料中金刚石与Cu-Cr合金界面结合良好,Cr元素在界面处发生富集并与金刚石反应生成Cr3C2,其界面结构为金刚石-Cr3C2-富Cr的Cu-Cr合金层-Cu-Cr基体,复合材料的热导率达到520W.m-.1K-1;Diamond-Cr/Cu复合材料中金刚石表面金属化Cr层在熔渗过程中与Cu互扩散,促进界面结合,形成金刚石-Cr3C2层-纯Cr层-Cu-Cr互扩散层-Cu的界面结构。与Diamond/Cu-Cr复合材料相比界面处增加了Cr层,材料的热导率仅为279W.m-1.K-1,但均高于Diamond/Cu复合材料的热导率。  相似文献   

3.
采用盐浴镀对金刚石颗粒进行表面镀Cr,通过真空热压制备Ag/金刚石复合材料,主要探讨了金刚石颗粒镀层对复合材料热导率和热膨胀系数的影响。结果表明,金刚石表面的Cr镀层明显改善了金刚石颗粒与Ag基体的界面结合,不仅降低了界面热阻,而且增强了金刚石颗粒对Ag基体膨胀的抑制作用。理论模型分析表明,未镀Cr金刚石复合材料热导率和热膨胀系数的试验值低于和高于理论值,而镀Cr金刚石复合材料热导率的试验值接近于DEM模型预测值,线膨胀系数(CTE)的试验值接近于Kerner模型预测值。  相似文献   

4.
以Pr6O11为刻蚀剂表面粗糙化处理金刚石颗粒,采用放电等离子烧结技术制备了金刚石/铜(硼)复合材料(金刚石体积分数为60.0%,硼体积分数为0.3%),通过试验、热流密度模拟和声子谱计算研究了金刚石表面改性及基体硼合金化对金刚石/铜复合材料导热性能的影响。结果表明,粗糙化的金刚石界面增加了接触面积;在基体中添加硼元素,复合材料在烧结后出现B4C相,B4C相的形成改善了金刚石–铜两相界面结合状态。金刚石粗糙化与基体合金化两者的共同作用有效减少了界面热阻,优化了热通量传递的效率,提高了复合材料的导热性能。金刚石/铜复合材料热导率从421 W·m?1·K?1提高到了598 W·m?1·K?1,提升了近42%。  相似文献   

5.
童震松  沈卓身  邢奕 《工程科学学报》2014,36(10):1341-1347
为满足现代电子工业日益增长的散热需求,急需研究和开发新型高导热陶瓷(玻璃)基复合材料,而改善复合材料中增强相与基体的界面结合状况是提高复合材料热导率的重要途径.本文在对金刚石和镀Cr金刚石进行镀Cu和控制氧化的基础上,利用放电等离子烧结方法制备了不同的金刚石增强玻璃基复合材料,并观察了其微观形貌和界面结合状况,测定了复合材料的热导率.实验结果表明:复合材料中金刚石颗粒均匀分布于玻璃基体中,Cu/金刚石界面和Cr/Cu界面分别是两种复合材料中结合最弱的界面;复合材料的热导率随着金刚石体积分数的增加而增加;金刚石/玻璃复合材料的热导率随着镀Cu层厚度的增加而降低,由于镀Cr层实现了与金刚石的化学结合以及Cr在Cu层中的扩散,镀Cr金刚石/玻璃复合材料的热导率随着镀Cu层厚度的增加而增加.当金刚石粒径为100μm、体积分数为70%及镀Cu层厚度为约1.59μm时,复合材料的热导率最高达到约91.0 W·m-1·K-1.   相似文献   

6.
放电等离子烧结法制备金刚石/Cu复合材料   总被引:1,自引:1,他引:0  
通过真空镀铬对金刚石颗粒进行表面改性,采用放电等离子烧结法(SPS)制备改性金刚石/Cu复合材料;研究金刚石的体积分数、工艺参数以及金刚石颗粒表面改性对复合材料导热性能的影响。结果表明,烧结温度、混料时间以及金刚石颗粒的体积分数都会影响材料的致密度,金刚石颗粒的体积分数还会影响材料的界面热阻,而致密度和界面热阻是影响该复合材料导热性能的2个重要因素;对金刚石颗粒进行真空镀铬表面改性,可改善颗粒与铜基体的润湿性,降低界面热阻。在一定的工艺条件下,镀铬金刚石体积分数为60%时,改性金刚石/Cu复合材料具有很高的致密度,其热导率达到503.9W/(m.K),与未改性的金刚石/Cu复合材料相比,热导率提高近2倍,适合做为高导热电子封装材料。  相似文献   

7.
镍基钎料激光钎焊金刚石磨粒的试验研究   总被引:1,自引:0,他引:1  
采用Ni基合金钎料,在Ar气保护条件下,对金刚石磨粒进行了激光钎焊试验研究.采用扫描电镜和能谱仪及X射线衍射仪对钎焊金刚石试样进行理化分析,探讨了不同工艺参数对连接界面的影响.研究结果表明,线能量密度ρ在25~30J/mm3范围, 可以实现金刚石磨粒与45号钢基体的优良焊接,在金刚石表面附近形成的富Cr层与金刚石表面的C元素反应生成碳化物,在钢基体结合界面上Ni-Cr合金钎料和钢基体中的元素相互扩散形成化学冶金结合.  相似文献   

8.
现代电子封装迫切需要开发新型高导热陶瓷(玻璃)基复合材料.本文在对镀钛金刚石进行镀铜和控制氧化的基础上,利用放电等离子烧结方法制备了金刚石增强玻璃基复合材料,并观察了其微观形貌和界面结合情况,测定了复合材料的热导率和热膨胀系数.实验结果表明:复合材料微观组织均匀,Ti/金刚石界面是复合材料中结合最弱的界面,复合材料的热导率随着金刚石粒径和含量的增大而增加,而热膨胀系数随着金刚石含量的增加而降低.当金刚石粒径为100 μm、体积分数为70%时,复合材料热导率最高达到了40.2 W·m-1·K-1,热膨胀系数为3.3×10-6K-1,满足电子封装材料的要求.   相似文献   

9.
金属-金刚石的粘结界面与金刚石表面的金属化   总被引:34,自引:2,他引:32  
研究了在铜基合金中添加强碳化物形成元素,在液相下通过与金刚石表面的界面反应而改变了金刚石与合金的界面形态,从而实现合金对金刚石的粘结。进一步提出了金刚石表面金属化的模型和技术途径。这种表面金属化的金刚石颗粒具有一般金属颗粒的可烧结性、可焊接性及表面可导电(可电镀)性。强化了粉末治金或电镀金属基体对金刚石颗粒的粘结力,可大幅度提高金刚石工具的水平。  相似文献   

10.
高导热材料在各个领域都有着十分广泛的应用。本研究采用金刚石颗粒与铝箔的排布设计铝/金刚石双相各自连续高导热复合材料,将上述排布的坯体经冷等静压与放电等离子体烧结制备了铝/金刚石复合材料。结果表明,所设计制备的复合材料能够达到较高的密度,烧结后保持为铝与金刚石两相,没有新相的生成,一定程度上形成了金刚石颗粒的定向排列,其导热性能具有明显的各向异性,金刚石颗粒与铝在各自连续方向上的热导率是与其垂直方向上的热导率的3倍左右。  相似文献   

11.
采用冷压烧结-热挤压复合工艺制备SiC_p/Al-Si复合材料,用JEM-2100型高分辨电子透射电镜(HRTEM)分析增强体与基体的界面显微组织。结果表明,粉末冶金工艺制备的SiC_p/Al-Si复合材料经热处理后,增强体与基体结合界面清晰平滑,结合良好,性能优良。颗粒增强体SiC和Al基体直接结合,(1103)SiC//(010)Al,错配度δ为0.020 4,衬底相SiC为Al的有效结晶核心,界面易形成半共格界面,有利于提高材料界面的结合强度。合金相Al4Cu9与Al基体界面清晰,完全不共格,经热处理后,合金相Al4Cu9转变为Al2Cu相在Al基体上均匀分布,并形成半共格界面。  相似文献   

12.
冷金凤  武高辉 《稀有金属》2006,30(Z2):20-23
颗粒增强的铝基复合材料已在航空航天、汽车等工业领域获得广泛的使用,但难加工性限制了此类复合材料的广泛应用.选用SiC颗粒和鳞片状石墨作为增强体,采用挤压铸造法制备SiCp+Gr/2024Al 复合材料,在保证材料力学性能的前提下改善材料的加工性能.结果表明,复合材料组织致密,石墨和SiC颗粒在基体中均匀分布;铸态组织中SiC和石墨颗粒与基体Al合金都未发现界面反应物;随着石墨的体积分数的增大,拉伸强度和弹性模量都下降,但加工性能得到明显的改善.石墨改善切削性能的机制为影响切屑形成机制和石墨对刀具的润滑作用.  相似文献   

13.
利用真空热压熔渗技术制备金刚石/Cu复合材料。研究熔渗工艺、金刚石表面镀覆条件等对制备出的金刚石/Cu复合材料的热物理性能的影响。通过理论分析和试验数据可以发现:利用熔渗工艺制备出的金刚石/Cu复合材料中增强体金刚石的石墨化程度非常低,对复合材料的热性能影响很小;提高复合材料的致密度以及降低复合材料的界面热阻是提高复合材料热导率的主要方法,通过改变工艺参数和在金刚石表面镀覆金属层等方法可以提高复合材料的致密度并降低材料的界面热阻;采用180~210μm粒径镀Cr金刚石制备的金刚石体积分数为60%、相对密度为99.1%的复合材料热导率达到462 W·m-1·K-1。  相似文献   

14.
采用压力浸渗和超高压熔渗法制备不同界面状态的金刚石/铜复合材料,分析界面状态对热学性能的影响,重点研究在-65~125℃和-196~85℃两种热冲击载荷下,循环100周次后材料的热导率和热膨胀系数的变化规律。结果表明:通过添加Cr元素的Dia/CuCr和使用超高压制备的EHV-Dia/Cu,材料的界面状态得到了改善;界面强度的提高,有利于获得高热导率,低热膨胀系数的复合材料。Dia/Cu的热导率仅有459.1 W·m-1·K-1,而EHV-Dia/Cu高达678.2 W·m-1·K-1,Dia/CuCr则为529.7 W·m-1·K-1。-55~125℃的热冲击条件下,Dia/Cu,Dia/CuCr,EHV-Dia/Cu的热导率保持良好的稳定性,变化在2.5%以内。而在-196~85℃的热冲击条件下,Dia/Cu由于界面结合力弱,在热应力的作用下热导率急剧下降;Dia/CuCr和EHV-Dia/Cu则表现出了良好的抗热冲击能力,循环后热导率仅下降3%左右。Dia/Cu和Dia/CuCr的初始热膨胀系数分别为8.45×10-6K-1和6.93×10-6K-1,Cr元素的添加使得界面结合强度提高,低膨胀系数的金刚石对高膨胀系数的基体约束力增加,使得热膨胀系数明显下降。在两种热冲击实验条件下,Dia/Cu的热膨胀系数基本保持不变,Dia/CuCr分别上升6.64%和7.22%。  相似文献   

15.
采用粉末冶金法制备了体积分数为35%的SiC_p/6061Al基复合材料,研究了复合材料的显微组织和基体与增强体颗粒界面对复合材料力学性能的影响。结果表明:SiC颗粒在基体中分布均匀,基体与增强体之间的界面结合情况较好,复合材料致密度高,抗拉强度较高。  相似文献   

16.
为了改善涂层的组织和性能,对超音速等离子喷涂技术制备的高铝青铜涂层进行高频感应重熔处理,研究重熔后涂层的微观组织结构特征和界面结合状态.感应重熔前涂层具有层流状组织特点,含有少量氧化渣、孔隙及未完全熔融颗粒,涂层与基体间以机械结合为主.感应重熔能消除未熔颗粒和夹杂,使组织致密、均匀,组织的层流特征弱化,孔隙率有所下降.基体元素和涂层元素相互扩散,在界面形成一条明显的白亮带,呈冶金结合状态,结合牢固,涂层的结合性能有所改善.重熔后扩散带和涂层表面的硬度较高,界面结合强度也由重熔前的25.110提升至83.358 MPa.   相似文献   

17.
采用盐浴镀对金刚石颗粒进行表面镀Ti,并采用放电等离子烧结制备高导热Al/金刚石复合材料,探讨了镀覆温度对金刚石表面镀Ti层结构、成分以及Al/金刚石烧结体导热性能的影响。结果表明,在较低的温度(700℃)镀覆30min即能够使金刚石表面包覆一层较为均匀的镀Ti层,镀层表面光滑平坦。当镀覆温度升高,金刚石不同类型表面呈现不同的镀层形貌。Ti在金刚石(100)面沉积速率要高于(111)面,表明金刚石(100)面比(111)面活性更高。随着金刚石镀Ti温度的提高,Al/金刚石复合材料的热导率逐步下降。相比之下,700℃镀覆温度下所得金刚石表面镀层较薄,而且镀层与金刚石之间结合力较强,SPS烧结过程中金刚石与Al基体能够实现较为紧密的结合,因而复合材料热导率优于其它更高镀覆温度条件下所制备的Al/金刚石复合材料。  相似文献   

18.
金刚石/铜复合材料(Diamond/Cu)的界面层相比基体与增强体有显著的化学成分变化,具有促进彼此结合、传递载荷的作用。Diamond/Cu复合材料作为热管理材料,热导率是一个关键性能参数。在众多影响因素中,界面对热导率的影响尤为重要。主要研究Diamond/Cu复合材料的界面组成,及成分梯度分布情况。通过扫描电子显微镜(SEM)观察复合材料断口形貌和界面区碳化铬的形态及分布,在近铜端,发现碳化铬以类鳞片状随机零散分布于铜与界面层的互扩散区,界面层处则集中堆垛为层状;采用能谱分析测试仪(EDS)对金刚石/铜复合材料界面区进行元素分布分析,发现各元素具有明显的过渡区域,根据实验结果可估算出过渡区域大约厚700 nm,碳化铬层大约厚400 nm;利用X射线衍射仪(XRD)对金刚石/铜复合材料的界面层进行物相分析,研究表明Diamond/Cu Cr复合材料中界面反应生成的碳化铬以3种形式存在,分别为Cr3C2,Cr7C3,Cr23C6。通过这些实验手段获取界面信息,如界面类型、界面结构、界面组成等,为进一步深入研究Diamond/Cu复合材料界面与性能的关系奠定坚实基础。  相似文献   

19.
针对电子封装材料散热需求,为了获得高导热界面材料,通过盐浴镀方法在金刚石表面镀W,并采用超音速激光沉积(SLD)技术在铜基板表面制备金刚石/铜复合涂层,研究镀W金刚石颗粒的表面形貌及成分,及其对金刚石/铜复合涂层微观结构、界面结合和导热性能的影响。研究结果表明,SLD制备的镀W金刚石/铜复合涂层中颗粒间结合良好,界面无明显缝隙,热导率达306.3 W·m-1·K-1。金刚石表面镀W改善了金刚石与铜的表面润湿性,促进了金刚石与铜颗粒之间的界面结合,使涂层具有良好的致密性,表现出优异的导热性能。  相似文献   

20.
颗粒与基体之间难以均匀稳定的混合以及二者的界面结合强度较差是限制颗粒增强金属基复合材料制备以及推广应用的共性关键问题,而目前的主要解决措施"预制体法"以及"润湿化预处理技术"又存在生产效率较低、制备成本较高等问题.基于此,在液态模锻的基础上,提出了不做预制体、也不进行润湿化预处理的制备颗粒增强金属基复合材料的新技术——"随流混合+高压复合"技术,并采用此方法成功制备了复合效果良好的ZTA/KmTBCr26抗磨复合材料.研究了ZTA/KmTBCr26复合材料的微观组织、硬度以及冲击性能,发现复合材料内部颗粒分布比较均匀,颗粒与KmTBCr26基体的结合紧密,属于微机械啮合.冲击试验结果表明,复合材料的冲击韧性与单一金属基体相比显著降低,冲击断口形貌显示材料的断裂是沿颗粒内部扩展的,没有出现颗粒的整体脱落,说明陶瓷颗粒与金属基体具有比较高的结合强度.考察了ZTA/KmTBCr26复合材料与单一KmTBCr26的干摩擦磨损性能,结果表明,低载荷条件下ZTA/KmTBCr26复合材料的磨损性能是KmTBCr26的1.82倍,而高载荷条件下复合材料的磨损性能则是KmTBCr26的3.3倍.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号