首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 578 毫秒
1.
针对高吸水性聚合物(SAP)耐盐性较差的问题,采用水溶液聚合法以丙烯酸(AA)、丙烯酰胺(AM)和2-丙烯酰胺-2-甲基丙磺酸(AMPS)为单体合成三元共聚的SAP,研究磺酸基团对聚合物耐盐性的影响.单体配比研究表明,引入AMPS前后,SAP在蒸馏水中30 min的吸液率分别为615 g/mL和695 g/mL; 在0.9%NaCl溶液中吸液率分别为50 g/mL和75 g/mL.研究出合成SAP的较佳条件AMPS∶AM∶AA的摩尔比为0.5∶4∶3; 反应温度为60 ℃; 引发剂的用量为0.125%; 交联剂的用量为0.02%.合成的SAP在蒸馏水中和0.9%NaCl溶液中达饱和时的吸液率分别为1 350 g/mL和125 g/mL.表明AMPS的引入有效地改善了高吸水性聚合物的耐盐性.  相似文献   

2.
以丙烯酰胺(AM)与丙烯酸(AA)为原料通过反相乳液聚合法制备硅藻土高吸水性树脂,选用环己烷为油相,过硫酸铵为引发剂,span60和tween80构成复合乳化体系,在合适的配比下,乳化剂用量为单体总质量的6%,油水体积比为3∶1,单体丙烯酸中和度为80%,引发剂用量为单体总质量的0.65%,交联剂用量为单体总质量的0.07%,研究硅藻土用量,硅藻土的焙烧温度和酸浸等因素对聚合过程和产物形态、吸水性能的影响.结果表明:在盐酸质量分数为8%、硅藻土加入量是单体总质量的1%时所得产物的吸水率和吸盐水率最高,分别  相似文献   

3.
以丙烯酸(AA)、丙烯酰胺(AM)、2-丙烯酰胺基-2-甲基丙磺酸(AMPS)和海泡石为原料,采用微波辐射法制备了聚(AA-AM-AMPS)/海泡石复合高吸水树脂,分别考察了引发剂、交联剂、AMPS及海泡石用量、微波辐射时间等对树脂吸水性能的影响.通过FTIR和XRD分析,表明产物为海泡石与有机单体聚合物的复合体,同时有部分单体插入到ST的层间,从而形成插层复合型高吸水性树脂.在最佳工艺条件下,复合高吸水树脂对蒸馏水和生理盐水的吸液率分别为1 160g/g和98g/g.  相似文献   

4.
采用水溶液聚合法,以丙烯酸(AA)、2-丙烯酰胺-2-甲基丙磺酸(AMPS)、丙烯酰胺(AM)和聚乙烯醇(PVA)为原料,以过硫酸钾为引发剂,分别合成AA/AMPS共聚物和AA/AMPS/AM共聚物,然后进行湿法纺丝,制得高吸水纤维并测定其吸(盐)水倍率.研究结果表明;在实验配比条件下,二元共聚吸水纤维随AMPS加入量增大,吸(盐)水倍率也随之增大;三元共聚吸水纤维随AMPS加入量增大,吸(盐)水倍率先增大后减小.  相似文献   

5.
淀粉-海藻酸系超强吸水剂的研制   总被引:3,自引:0,他引:3  
在无需氮气保护的情况下,以N,N'-亚甲基双丙烯酰胺为交联剂,用过硫酸铵为引发剂引发玉米淀粉、海藻酸钠与丙烯酸(钠)接枝共聚制备高吸水性树脂,考察了交联剂用量、引发剂用量、单体用量、单体中和度及物料配比等因素对树脂吸水率的影响,利用正交试验得到了制备吸水树脂的最佳的工艺条件:玉米淀粉5g,海藻酸钠1.25g,单体丙烯酸25mL,引发剂1.5%,交联剂量0.2%,单体中和度80%.所得产品的吸水率为470mL/g(蒸馏水),吸盐率为38mL/g(0.9%的盐水).  相似文献   

6.
为了降低深层卤水提输过程的能耗,开展耐温耐盐的提输卤管道用减阻剂研究具有重要的现实意义。以丙烯酰胺(AM),2-丙烯酰胺基-2-甲基丙磺酸(AMPS)和丙烯酸(AA)为单体, 采用氧化还原引发剂体系水溶液聚合法合成耐温耐盐的提输卤管道用减阻聚合物P(AM/AMPS/AA)。以聚合物在常温卤水管道中的减阻率为考核指标,设计四因素三水平正交试验,确定最佳合成条件为:反应系统pH为1,反应温度为30 ℃,单体质量配比为m(AM)∶m(AMPS)∶m(AA)=15∶3∶2,引发剂加入质量为单体总质量的0.04%。根据在线红外分析结果确定最佳反应时间为3 h。利用FTIR和1H NMR等手段对P(AM/AMPS/AA)的结构进行表征并用多角激光光散射仪测定其分子量。在自制的减阻率测试环道上对合成聚合物的减阻性能进行测试,合成聚合物表现出较好的耐温耐盐性能,减阻效果明显。如在模拟卤水质量浓度150 g/L、水温15 ℃、流量950 L/h、减阻剂用量为20 mg时,合成减阻聚合物的减阻率可以达到41.2%。与现有减阻剂相比,合成的P(AM/AMPS/AA)减阻聚合物减阻性能大幅度提高,具有较好的开发应用前景。  相似文献   

7.
以2-丙烯酰胺基-2-甲基丙磺酸(AMPS)、丙烯酰胺(AM)和丙烯酸(AA)为单体,采用过硫酸铵和亚硫酸氢钠氧化还原体系,通过水溶液聚合法合成了耐温型降滤失剂。通过正交试验和条件试验确定了聚合反应的最佳条件:引发温度40℃,引发剂质量分数0.010%,pH=4.0,m(AMPS)∶m(AM)∶m(AA)=10∶26∶4,在此条件下得到产物特性黏数为7.52 dL.g-1。对其结构用红外光谱进行了表征,并在淡水基浆中对产品的降滤失性能进行了室内评价,结果表明产物具有良好的耐温和降滤失能力。  相似文献   

8.
聚丙烯酸高吸水树脂的制备   总被引:2,自引:0,他引:2  
以K2S2O8作为引发剂,N,N’-亚甲基双丙烯酰胺作为交联剂,采用水溶液聚合法制备丙烯酸类吸水性凝胶.凝胶经过干燥、粉碎后,得到高吸水树脂.研究了丙烯酸单体的浓度、丙烯酰胺单体的浓度、引发剂的用量、交联剂的用量,丙烯酸的中和度,反应温度等条件对所得树脂吸水性能的影响.  相似文献   

9.
以K2S2O8作为引发剂,N,N'-亚甲基双丙烯酰胺作为交联剂,采用水溶液聚合法制备丙烯酸类吸水性凝胶.凝胶经过干燥、粉碎后,得到高吸水树脂.研究了丙烯酸单体的浓度、丙烯酰胺单体的浓度、引发剂的用量、交联剂的用量,丙烯酸的中和度,反应温度等条件对所得树脂吸水性能的影响.  相似文献   

10.
SAMPS/NVP/AM/SAA四元共聚物的制备与表征   总被引:1,自引:0,他引:1  
以 2 -丙烯酰胺基 - 2 -甲基丙磺酸钠 ( SAMPS)、N-乙烯基吡咯烷酮 ( NVP)、丙烯酰胺 ( AM)和丙烯酸钠 ( SAA)为单体原料 ,合成了 SAMPS/ NVP/ AM/ SAA四元共聚物。通过系列试验 ,得到了共聚物的制备条件 :反应温度 60℃ ,保温时间 4h,单体配比n( SAMPS)∶ n( NVP)∶ n( AM)∶n( SAA) =2∶ 1∶ 6∶ 1 ,单体质量分数 2 0 % ,引发剂质量分数 0 .1 0 %。四元共聚物的特征吸收峰较好地显示在相应的红外光谱图上。热重分析图谱表明 ,该四元共聚物具有较高的热稳定性。由元素分析结果可以推断 :AM单体的竟聚率大于 SAMPS单体  相似文献   

11.
借助超声波的分散、辅助引发作用,以丙烯酸(AA)和丙烯酰胺(AM)为单体,以N,N’-亚甲基双丙烯酰胺(NMBA)为交联剂,以过硫酸钾(K2S2O8)为引发剂,无氮气保护下,采用超声波细胞粉碎法制备了聚丙烯酸/丙烯酰胺(P(AA-AM))高吸水性树脂。采用正交试验研究了树脂吸水性能最优的反应条件。通过单因素实验,重点考察了反应温度、引发剂用量、单体配比等对树脂吸水率的影响。用红外光谱(FTIR)和扫描电镜(SEM)对树脂的结构与形貌进行表征。结果表明,在超声条件下,可在较短的反应时间内合成高吸水性树脂。最佳工艺条件是AA中和度为70%,T=50℃,n(AM):n(AA)=0.3,m(NMBA):m(AA+AM)=0.05%,m(K2S208):m(AA+AM)=0.2%,吸水倍率最高为398.172g/g。三维网状结构的存在是树脂高吸水性的关键。  相似文献   

12.
为了提高树脂的吸水率、抗盐性和重复吸水后的凝胶强度,本研究将预处理后的小麦秸秆,通过水溶液聚合法与丙烯酸、丙烯酰胺、 改性膨润土共聚合成高吸水性树脂。探讨交联剂用量、引发剂用量、单体质量比、丙烯酸中和度、预处理后的小麦秸秆和膨润土用量等单因素对树脂吸水率和吸盐水率的影响,并确定了合成的适宜条件。通过红外光谱对预处理后的小麦秸秆和合成的高吸水性树脂的结构进行了分析,对比了最佳条件下添加和不添加改性膨润土所制备的高吸水性树脂的吸液率、重复吸液率和重复吸液后的凝胶强度。结果表明:最佳条件下制得的树脂在蒸馏水和0.9 %盐水中的吸液率分别为195.7g?g-1和24.2g?g-1,且最佳条件下添加改性膨润土比没有添加所制备的高吸水性树脂在吸液率、重复吸液率和重复吸液后的凝胶强度方面都明显改善。  相似文献   

13.
以丙烯酸(AA)、丙烯酰胺(AM)、2-丙烯酰胺-2-甲基丙磺酸(AMPS)和二甲基-二烯丙基氯化铵(DMDAAC)为单体,采用反向悬浮聚合法,以过硫酸钾(KPS)为引发剂,N,N-亚甲基双丙烯酰胺为交联剂,Span80为分散剂,在环己烷连续相下进行四元共聚,制备出了耐盐性高吸水树脂.研究了丙烯酸和丙烯酰胺不同配比对吸水率的影响,实验结果表明:当AA∶AM=4∶1时,在蒸馏水、0.9%(质量分数)的NaCl溶液、2%(质量分数)的NaCl溶液、5%(质量分数)的NaCl溶液中的最大吸水量分别为500 g/g、200 g/g、150 g/g、60 g/g.通过与传统三元共聚树脂(AA/AMPS/DMDAAC)的红外分析(FT-IR)和热重分析(TG)比较,表明几种单体产生了交联,且有较好的协同作用;并对四元共聚产物进行了粒度测试及扫描电镜分析(SEM),确定了其微观形貌.  相似文献   

14.
以丙烯酰胺(AM)单体为主要原料,引入疏水缔合单体2-丙烯酰胺基十四烷磺酸(AMC14S)和辅助共聚单体2-丙烯酰胺基-2-甲基丙磺酸(AMPS),选择氧化还原/水溶性偶氮化合物复合引发体系,采用胶束聚合技术和前加碱共水解法,制备了耐温抗盐驱油聚合物AM/AA(丙烯酸)/AMPS/AMC14S产品。考察了偶氮化合物W-58、单体AMC14S用量对共聚物相对分子质量的影响,并表征了共聚物的结构特征。实验结果表明,当偶氮化合物W-58用量为3.0×10-4g.g单体-1、AMC14S质量分数为0.2%~0.5%时,共聚物的相对分子质量最高,耐温抗盐性能较好。  相似文献   

15.
秸秆接枝丙烯酸丁酯制备吸油树脂   总被引:1,自引:0,他引:1  
以玉米秸秆为反应基材、丙烯酸丁酯为接枝单体、二甲基丙烯酸1,4-丁二醇酯(BDDMA)为交联剂,采用悬浮聚合方法合成了吸油材料。考察了物料配比、引发剂用量、交联剂用量、反应温度等因素对合成材料吸油性能的影响,用傅里叶变换红外光谱仪和扫描电镜分别对材料的化学结构及表面形貌进行了表征。结果表明,吸油材料的最佳合成条件为m(秸秆)∶m(丙烯酸丁酯)=1∶1、w(引发剂)=0.6%、w(交联剂)=0.2%、反应温度75℃、反应时间6h,在此条件合成的吸油材料对甲苯的吸油率为5.8g/g。  相似文献   

16.
淀粉基可降解性高吸水性树脂的制备   总被引:1,自引:1,他引:0  
以硝酸铈铵为引发剂,通过水溶液聚合法制得了玉米淀粉接枝丙烯酰胺高吸水性树脂。红外光谱分析证实了聚合物的聚合成功。研究了共聚物的反应温度、单体的配比、引发剂种类与用量、交联剂用量对吸水率的影响。得到的最佳反应条件为:在40℃时,玉米淀粉与丙烯酰胺的质量比为1∶2;引发剂硝酸铈铵与乙二胺的用量与丙烯酰胺的摩尔比分别为1.10×10-1和2.18×10-3时,聚合物的吸水率为自身质量的716倍。对吸水性树脂进行了降解测试,在自然条件下不到一个月的时间自然分解。  相似文献   

17.
后水解法制备AM/AA/AMPS共聚物   总被引:1,自引:0,他引:1  
以丙烯酰胺(AM)单体为主要原料,引入辅助共聚单体2-丙烯酰胺基-2-甲基-1-丙磺酸(AMPS),采用胶束聚合技术和后加碱水解法,制备了AM/丙烯酸(AA)/AMPS耐温抗盐驱油聚合物。考察了水解剂、水解温度、水解时间、水解剂用量等因素在后水解过程中对聚合物相对分子质量的影响。实验证明最佳合成条件为:水解剂为质量分数8%的NaOH,水解温度85℃,水解时间3 h。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号