首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A series of LiY1-xEux(MoO4)2 red-emitting phosphors were synthesized by sol-gel technique. The phase impurity and spectroscopic properties were characterized by X-ray diffraction (XRD) and photo-luminescence (PL) spectra respectively. The effect of Eu3+ doping con-centration, annealing temperature and the molar ratio of citric acid to the total metal cations (C:M) on the optical properties of the red phos-phors were studied and optimized. It was found that all the samples could be excited efficiently by blue light (465 nm), which was well coin-cident with the emission of GaN based LED chips. The luminescent intensity reached maximum when annealing temperature was 750 ?C and Eu3+ doping concentration was 5% with C:M=3:1.  相似文献   

2.
K2Ba(MoO4)2:Eu3+ phosphors were synthesized by solid-state reaction. The emission and excitation spectra of K2 Ba(MoO4)2:Eu3+ phosphors exhibited that the phosphors could be effectively excited by near ultraviolet (394 nm) and blue (465 nm) light, and emitted red light at 616 nm. The influence of Eu3+concentration, sintering temperature and charge compensators (K+, Na+ or Li+ ) on the emission intensity were investigated. The results indicated that concentration quenching of Eu3+ was not observed within 30mol.% Eu 3+, 600 oC was a suitable sintering temperature for preparation of K2 Ba(MoO4)2:Eu3+phosphors, and K+ ions gave the best improvement to enhance the emission intensity. The CIE chromaticity coordinates of K2 Ba(MoO4)2:0.05Eu3+phosphor were calculated to be (0.68, 0.32), and color purity was 97.4%.  相似文献   

3.
A series of Sr3Bi1-x(PO4)3: xSm3+phosphors were prepared by solid state method at 1250 °C for 4 h. X-ray diffraction (XRD) indi-cated that the sample was of a pure phase of Sr3Bi(PO4)3. The main excitation peaks were located at 343 (6H5/2→4H9/2), 360 (6H5/2→4D3/2), 373 (6H5/2→6P7/2), 400 (6H5/2→4F7/2), 414 (6H5/2→6P5/2) and 467 nm (6H5/2→4I13/2). The main emission were located at 563 (4G5/2→6H5/2), 599 (4G5/2→6H7/2), 646 (4G5/2→6H9/2) and 708 nm (4G5/2→6H11/2). The intensest emission was excited by 400 nm. We studied the effect of differ-ent doping concentrations of Sm3+ activator on the luminescence properties and found that the luminescent intensity first increased with Sm3+ concentration increasing, and then decreased. The luminescent intensity had the best value when x=0.04. The chromaticity coordinates of the sample Sr3Bi0.96(PO4)3:0.04Sm3+ were (x=0.57, y=0.36), and the lifetime was 2.12 ms.  相似文献   

4.
Europium orthophosphate monohydrate(EuPO4·H2O) nanorods with typical dimensions of about 10-30 nm in diameter and 300-500 nm in length were prepared by using the soft template method.The effects of using diethylene glycol(DEG) and polyethylene gly-col(PEG) polymers as well as the pH values on the size,crystalline structure and morphology of EuPO4·H2O nanorods were investigated.Field emission scanning electron microscopy(FESEM) and X-ray diffraction(XRD) data of the prepared samples were elucidated.The nano-rods were highly uniform and their mean length was reduced by using DEG and PEG as soft template agents.For all prepared samples,the rhabdophane-type hexagonal EuPO4·H2O was the dominated phase.The photoluminescence(PL) spectroscopy measurements of EuPO4·H2O nanorods revealed that,under UV excitation,EuPO4·H2O nanorods exhibited strong luminescence with narrow bands corresponding to the in-tra-4f transitions of 5D0→7Fj(j=1,2,3,4) of Eu3+ ions.The peaks were found at 594 nm(5D0→7F1) ,619 nm(5D0→7F2) ,652 nm(5D0→7F3) ,and 697 nm(5D0→7F4) ,with the strongest emission at 594 nm.  相似文献   

5.
Mixed strontium-yttrium borate phosphor Sr3Y2(BO3) 4 doped with Eu3+ ions was obtained by the sol-gel Pechini method.Crystal structure of the synthesized compound was analyzed by X-ray powder diffraction.Optimal conditions for the synthesis were found.Photo-physical properties of the phosphor samples were investigated by collecting excitation and luminescence spectra as well as measuring lumi-nescence lifetime.Judd-Ofelt analysis showed that Eu3+ ions occupied Y3+ sites in the crystalline network.The studied compound showed a red emission with the quantum yield of 54%-55% and can be potentially used as phosphor for plasma display panels and luminescent tubes.  相似文献   

6.
The goal of this work is aimed to improve the power conversion efficiency of single crystalline silicon-based photovoltaic (PV) cells by using the solar spectral conversion principle, which employed a down-converting phosphor to convert a high-energy ultraviolet photon to the less energetic red-emitting photons to improve the spectral response of Si solar cells. In this study, the surface of silicon solar cells was coated with a red-emitting KCaGd(PO4)2:Eu3+ phosphor by using the screen-printing technique. In addition to the investigation on the microstructure using scanning electron microscopy (SEM), we measured the short circuit current (Isc), open circuit voltage (Voc), and power conversion efficiency (η) of spectral-conversion cells and compared with those of bare solar cells as a reference. Preliminary experimental results revealed that in an optimized PV cell, an enhancement of (0.64+0.01)% (from 16.03% to 16.67%) in Δη of a Si-based PV cell was achieved.  相似文献   

7.
Eu3+ doped Gd2WO6 and Gd2(WO4)3 nanophosphors with different concentrations were prepared via a co-precipitation method. The structure and morphology of the nanocrystal samples were characterized by using X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM), respectively. The emission spectra and excitation spectra of samples were measured. J-O parameters and quantum efficiencies of Eu3+ 5D0 energy level were calculated, and the concentration quenching of Eu3+ luminescence in different matrixes were studied. The results indicated that effective Eu3+:5D0-7F2 red luminescence could be achieved while excited by 395 nm near-UV light and 465 nm blue light in Gd2WO6 host, which was similar to the familiar Gd2(WO4)3:Eu. Therefore, the Gd2WO6:Eu red phosphors might have a potential application for white LED.  相似文献   

8.
The novel phosphors of La 2 MoO 6 activated with the trivalent rare earth Ln 3+ (Ln=Eu, Sm, Dy, Pr, Tb) ions were synthesized by solid state reactions at high temperature in air atmosphere, and their phase impurities and luminescent properties were studied. The photoluminescence (PL) excitation and emission spectra, and decay curves were employed to study their luminescence properties. The lifetimes of the characteristic emissions from Ln 3+ ions were in the order of millisecond except Pr 3+ ions. (LaEu 1-x ) 2 MoO 6 was a promising phosphor for practical application and the optimum concentration was x=0.075. The concentration quenching mechanism of Eu 3+ was also discussed by theoretical fitting using Burshtein model.  相似文献   

9.
Monodisperse(Sr,Eu)CO3 sphere(the homogenous mixture of Sr2+ and Eu3+ carbonates) was firstly prepared,and then its surfacewas coated by amorphous SiO2 in the presence of cationic surfactant cetyltrimethylammonium bromide(CTAB) to form(Sr,Eu)CO3@SiO2core-shell-like precursor.The overall synthesized mechanism was investigated and proposed based on the Fourier transform infrared spectroscopy(FTIR),X-ray diffraction(XRD) and scanning electron microscopy(SEM).This strategy could be applied to construct core-shellstructured precursors for the preparation of alkali earth silicate phosphors.  相似文献   

10.
SrAl2O4:Eu2+,Dy3+ hollow microspheres were successfully prepared through a facile and mild solvothermal co-precipitation combining with a postcalcining process.The structure and particle morphology were investigated by X-ray diffraction(XRD),scanning and transmission electron microscopy(SEM and TEM)pictures,respectively.The mechanism for the formation of spherical SrAl2O4:Eu2+,Dy3+ phosphor was preliminary presented.After being irradiated with ultraviolet(UV)light,the spherical phosphor emitted long-lasting green phosphorescence.Both the photoluminescence(PL)spectra and luminance decay,compared with that of commercial bulky powders,revealed that the phosphors had efficient luminescent and long lasting properties.It was considered that the SrAl2O4:Eu2+,Dy3+ hollow microspheres had promising long-lasting phosphorescence with potential scale-dependent applications in photonic devices.  相似文献   

11.
A series of CaMoO 4 :xTb 3+(x=0.01,0.03,0.05,0.07,0.09,0.15 and 0.20) phosphors in pure phase were prepared via high temperature solid-state reaction approach.The crystal structure of the phosphors was investigated by X-ray diffraction(XRD),and the optical properties were investigated by Fourier transform infrared spectroscopy(FT-IR),ultraviolet-visible spectroscopy(UV-Vis) and photoluminescence(PL) spectroscopy.The PL spectra illustrated that these phosphors could be efficiently excited by the charge transfer band of the host and the energy transfer efficiency from the host to the doped activator reached 60% when the doping concentration of the activator Tb 3+ was 20 mol.%.The concentration quenching occurred at x=10 mol.%,from which the critical distance of activator was calculated to be about 1.14 nm.The CIE coordinates were estimated to be close to the standard green value.The host sensitized samples had potential application as green phosphors.  相似文献   

12.
Novel nanosized Y2WO6:Eu3+ phosphors were synthesized via a co-precipitation reaction. The crystal structure of Y2WO6:Eu3+sample was monoclinic phase characterized by using X-ray diffraction (XRD). The...  相似文献   

13.
A needle-like Eu2+ and Dy3+ co-doped BaAl2O4 long-lasting phosphor was synthesized via a hydrothermal-homogeneous precipitation method assisted by cetyl trimethyl ammonium bromide(CTAB) as a template.The crystal structure,morphology and optical properties of the composites were characterized.XRD results showed that the single-phase BaAl2O4 was formed at 900 ℃ in an active carbon atmosphere,which was much lower than that prepared by traditional solid-state reaction method.Scanning electron microscopy(SEM) and transmission electron microscopy(TEM) observation revealed that the precursor had well-dispersed distribution and showed needle-like morphology with the average diameter of about 100 nm and the length up to 1 μm.The final product,BaAl2O4:Eu2+,Dy3+ phosphor,inherited the needle-like shape from precursor via adding the surfactant CTAB.After irradiation by ultraviolet radiation with 355 nm for 5 min,the phosphors emitted bluish green color long-lasting phosphorescence corresponding to the typical emission of Eu2+ ion.Both the photoluminescence spectra and luminance decay revealed that the phosphor had efficient luminescent and long-lasting properties.  相似文献   

14.
KTb(WO4)2(KTW) single crystal with dimensions up to 30mm×30mm×10mm was grown by the top-seeded solution growth (TSSG) method for the first time. The crystal structure was refined at room temperature by using single crystal X-ray diffraction data. Absorption and fluorescence spectra were measured at room temperature. The fluorescence lifetime of KTb(WO4)2 was 114μs. The specific heat of the KTb(WO4)2 crystal was also measured at room temperature.  相似文献   

15.
A novel green-emitting phosphor,Eu2+-doped Ca2-x/2 Si1-x Px O4(0.25≤x≤0.30),was prepared through a conventional solidstate reaction.X-ray diffraction(XRD),photoluminescence(PL) and decay studies were employed to characterize the sample,which was assigned to P63mc space group in the hexagonal system.The effect of P-doping on the α-Ca2 SiO4 was studied and P2 O5 broken down by the raw material of(NH4)2 HPO4 played an important role in stabilizing α-Ca2 SiO4 which can only be stable at high temperature.The XRD patterns of the Ca2-x/2 Si1-x Px O4 host were found pure and optimized when the mole fraction of P2 O5 was 14.5%.The diffuse reflectance spectra of the Ca1.855 Si0.71 P0.29 O4 and Ca1.845 Si0.71 P0.29 O4 :0.01Eu2+covered the spectral region of 230-400 nm,implying that the phosphor was suitable for UV or near-UV LED excitation.The phosphor could be effectively excited in the near UV region with the maximum at 372 nm.The emission spectrum of the Ca1.845 Si0.71 P0.29 O4 :0.01Eu2+phosphor showed an asymmetrical single intensive band centered at 513 nm,which corresponded to the 4f65d1→4f7transition of Eu2+.Eu2+ions might occupy two types of Ca2+sites in the Ca1.855 Si0.71 P0.29 O4 lattice and form two corresponding emission centers,which led to the asymmetrical emission of Eu2+in Ca1.855 Si0.71 P0.29 O4.The effects of Eu2+-doped concentration in Ca1.855-x Si0.71 P0.29 O4 :xEu2+on the PL were also discussed,the optimum doping concentration of Eu2+was 1 mol.% and the critical distance of the energy transfer was also calculated by the concentration-quenching method.The non-radiative energy transfer between Eu2+seemed to be caused by the multipole-multipole interaction.The fluorescence lifetime of Eu2+was found to be 0.55711 μs.The results suggested that these phosphors might be promising candidates used for near UV light excited white LEDs.  相似文献   

16.
Eu3+ and Ho3+ doped Sr2TiO4 were synthesized by using solid-state reactions. Samples sintered at 1300 oC for 6 h could be indexed to Sr2TiO4 with a single phase. Eu3+ in Sr2TiO4 emitted orange light under the excitation at 365 nm in a broad band which was coupled well with the strongest emission of high pressure mercury vapor lamps. Ho3+ in Sr2TiO4 emitted yellow light under blue excitation from 450 to 460 nm which agreed well with the emission of blue InGaN-based light-emitting diodes. The present results indicated that Sr2TiO4 was a promising host for high pressure mercury vapor lamps or white light-emitting diodes.  相似文献   

17.
Monoclinic Yb3+-doped KLu(WO4)2 (Yb:KLuW) crystal with large sizes was grown by top-seeded solution growth (TSSG) method. Room-temperature absorption and fluorescence spectra were measured. The ground-state energy-level splitting was 562 cm-1. The absorption cross section, peak emission cross section as well as the minimum inversion fraction ?min and the minimum absorbed pump intensity Imin were calculated. The measured emission lifetime was 0.676 ms and the emission spectral bandwidth (FWHM) was up to 55 nm. In comparison with established laser crystals the results suggested that this crystal has potential application in efficient tunable and femtosecond laser operation.  相似文献   

18.
Nanoscale Lu2O3:Eu3+ phosphor was prepared by a modified solution combustion method using urea and acrylamide monomer.The particle sizes and photoluminescent properties of nano-phosphor were closely related to the molar ratio of urea-to-RE nitrates and acrylamide monomer-to-RE nitrates.The as-prepared samples with the sizes of 9.6-11.6 nm were characterized by X-ray diffraction,scanning electron microscopy,transmission electron microscopy and energy dispersive spectrometer.Lu2O3:Eu3+ nano-phosphor that depicted high photoluminescence in the size around 10 nm was reported.Compared with the sample prepared by solid state reaction,the photoluminescence of sample was increased sufficiently to be 45.1%.The emission spectra of the samples presented the typical emission from 5D0 level to 7FJ(J=0,1,2,3,4) level of the Eu3+ ion.  相似文献   

19.
Yttrium aluminum garnet structure phosphors Lu2CaMg2Si3O12:Mn2+ were synthesized by conventional high temperature solid-state reaction in reductive atmosphere. The structure and optical properties of samples were characterized by application of powder X-ray diffraction (XRD) and photoluminescence spectroscopy. Results of X-ray diffraction (XRD) analysis showed that the phosphors mainly presented garnet structure with a few weak peaks of impurity phases. Lu2-xCaMg2Si3O12:xMn2+ (x=0.01-0.8) phosphors showed a broad emission band peaking at around 590 nm under ultraviolet (UV) light of 408 nm when Mn2+ concentration was less than 0.08 mol. With an increase in the Mn2+ concentration (above 0.08), another broad emission band peaking at 720 nm besides 590 nm was observed, which may be due to manganese ion having different valence and occupying different host lattice. The critical quenching concentrations of manganese ion in the wavelength of 590 and 720 nm were about 0.06 and 0.2 mol, respectively. With 408 nm excitation wavelength, emission color of the samples had a red shift trend as the Mn2+ concentration increased. All the results indicated that the Lu2CaMg2Si3O12:Mn2+ phosphors could be applicable to n-UV based white LEDs.  相似文献   

20.
Sr3-z(Alx,Si1-x)O -5-xFx:zCe3+ phosphors were synthesized by high-temperature solid-state reaction.The structure and luminescence properties of phosphors with various Al/Si ratios and Ce3+ concentrations were characterized using various methods such as X-ray diffraction,photoluminescence excitation and photoluminescence spectra.XRD result displayed that a complete solid solution between Sr3AlO4F and Sr3SiO5 was formed.With the increasing of x value,a broader excitation band and stronger absorption appeared in the blue light region.Moreover,the emission band shifted to a shorter wavelength and the emission intensity reached a maximum at x=0.6.By adjusting the concentration of Ce3+,a widely tunable range of emission wavelength under the excitation of 460 nm was obtained from the green to yellow regions.In addition,the concentration and thermal quenching were also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号