首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
类似于通过求解图像协方差矩阵特征值所得到的特征脸方法,提出在双三次插值得到图像降维基础上,再进行线性鉴别分析(LDA)的插值脸方法,从而得到鉴别矢量集,实现人脸图像识别,试验结果显示,插值脸方法比普遍采用的特征脸方法效果更好.所提出的思想方法对于人脸识别的理论研究和工程应用具有较大价值.  相似文献   

2.
提出了一种新的基于图像分块重构和线性判别分析相融合的方法,主要用于人脸识别。该方法通过计算两幅图像之间图像块的重构均值误差,运用线性判别分析求出两幅图像降维后的欧式距离,融合重构误差和欧式距离计算这两幅图像之间的差别程度。识别过程中,待测图像与训练图像中差别最小的认为是属于同一个人。该方法在ORL人脸数据集上进行实验,并在PIE数据集上验证了其有效性。新方法能够有效克服光照变化、平移等影响,在识别性能上比较有优势。  相似文献   

3.
基于2DLDA方法,提出了一种基于图像分块的二维线性鉴别分析(M2DLDA)的人脸识别方法。该方法首先对原始人脸图像进行必要的预处理后进行分块,再对分块后的子图像分别采用2DLDA方法进行特征提取,最后用最小距离分类器进行识别。该方法的优点:分块后能有效的抽取人脸图像的局部特征有利于分类;降低了2DLDA方法提取的特征矩阵的维数;特征提取是基于图像矩阵的,抽取方便快速。在ORL人脸数据库上的实验结果表明:该方法在识别性能上优于2DLDA方法。  相似文献   

4.
基于PCA+LDA的热红外成像人脸识别   总被引:3,自引:0,他引:3  
研究热红外成像人脸识别技术,提出一种基于主成分分析(PCA)和线性鉴别分析(LDA)的热红外成像人脸识别方法.针对热红外人脸图像的特点,首先对图像进行预处理得到一组标准热红外人脸图像,利用PCA算法对图像向量进行降维并提取其全局特征,对降维后的热红外人脸全局特征采用LDA算法训练生成一个使类间离散度最大、类内离散度最小的最佳分类器.最后,进行基于PCA+LDA的热红外人脸图像识别研究,实验结果表明该方法可获得较高的识别率.  相似文献   

5.
为了提高人脸识别效率,提出了一种基于PCA、LDA和SVM算法融合的人脸识别方法。使用主成分分析(PCA)将人脸图像变换到新的特征空间中,消除图像特征间的相关性和噪声,提取人脸全局特征,在实验阶段取较多的投影方向使其尽可能多的保持原始信息;使用线性判别分析(LDA)算法进一步投影变换降低数据维度;使用支持向量机(SVM)分类识别。将PCA、LDA和SVM三种算法的优点结合起来,在ORL数据库上进行仿真实验,结果表明该方法的识别率可达99.0%。  相似文献   

6.
杨颖娴 《福建电脑》2009,25(5):90-90
本文首先介绍了LDA方法在人脸识别上的应用,然后介绍了直接用LDA方法会遇到的问题,提出了采用先降维再使用LDA方法的思想。并且进行了识别率的比较。  相似文献   

7.
在2维线性鉴别分析(2DLDA)的基础上.介绍了2维异方差鉴别分析(2DHDA),并将其应用于人脸识别.2DHDA算法去除了2DLDA算法样本类内协方差相等的约束,克服了异方差鉴别分析(HDA)算法的\"小样本\"问题.首先,根据2DLDA准则定义2DHDA准则;然后,将2DHDA准则取对数,用梯度下降法求得最优投影矩阵,人脸图像向最优投影矩阵投影提取人脸图像的特征;最后,最小距离分类器完成人脸识别.基于ORL与Yale混合人脸数据库的实验结果表明了2DHDA应用于人脸识别的有效性.  相似文献   

8.
利用相似度多个维度的信息进行开集判别,以提高开集人脸识别的准确率。该方法首先通过大量带标识的测试样本获得已知类样本和非已知类样本相似度向量的分布,然后引入线性判别分析学习两个类中相似度向量的分布特征,在开集判别中通过相似度向量的特征匹配来判断样本是否为已知类。利用相似度分布中的分类信息,训练出的特征具有更强的分类能力。不同人脸库的实验表明,相对于传统方法,文中方法能提高开集识别的准确率。  相似文献   

9.
模块二维主成分分析——人脸识别新方法   总被引:7,自引:0,他引:7       下载免费PDF全文
提出了模块二维主成分分析(M2DPCA)线性鉴别分析方法。M2DPCA方法先对图像矩阵进行分块,对分块得到的子图像矩阵直接进行鉴别分析。其特点是:能有效地降低模式原始特征的维数;可以完全避免使用矩阵的奇异值分解,特征抽取方便;此外,2DPCA是M2DPCA的特例。在ORL人脸库上试验结果表明,M2DPCA方法在识别性能上优于PCA,比2DPCA更具有鲁棒性。  相似文献   

10.
郭志强  杨杰 《计算机科学》2009,36(11):296-299
提出了二维主成分分析(2DPCA)与二维线性鉴别分析(2DLDA)相结合的双向压缩投影的子空间人脸识别方法.该方法在进行一次2DPCA运算后,对特征矩阵进行转置,再进行2DLDA运算,与(2D)~2PCA与(2D)~2LDA相比,充分利用了2DPCA和2DLDA的优点,既包含了样本的类别信息,又消除了图像矩阵行和列的相关性,有效地提取了行和列的识别信息,识别特征维数也大幅度减少.在ORL和PERET人脸库上的实验表明,在不影响识别速度的情况下,其识别率优于现有二维特征提取方法.  相似文献   

11.
人脸识别特征提取方法和相似度匹配方法研究   总被引:1,自引:0,他引:1  
郭瑞  张淑玲  汪小芬 《计算机工程》2006,32(11):225-227,247
横向比较特征提取方法,综合考虑认证率和特征提取时间两方面因素,该文认为特征脸结合线性判别分析方法是研究的4种特征提取方法中最优的方法。通过对投影空间维数的研究,最佳投影空间维数同数据库本身类内图像的相似程度和每一类的样本数目同方向增长,它们之间存在定性关系而非定量关系。相似度匹配方法的研究结果表明余弦距离分类器分类效果最佳。  相似文献   

12.
一种改进的线性判别分析法在人脸识别中的应用   总被引:1,自引:0,他引:1  
提出了一种新的基于LDA的人脸识别算法。该方法重新定义了样本的类间散布矩阵,在原始的定义基础上增加了一种径向基函数(RBF)调节类间距离,使得在选择投影方向时能更好地分升各类样本;同时该方法存类间散布矩阵与类内散布矩阵的特征分解的基础上,通过变换求出符合Fisher准则的最优投影方向,可以证明这样得到的投影方向同时具有正交性与统计不相关性。通过ORL人脸数据库的数值实验,表明了该算法比传统算法有更好的性能。  相似文献   

13.
NNSRM is an implementation of the structural risk minimization (SRM) principle using the nearest neighbor (NN) rule, and linear discriminant analysis (LDA) is a dimension-reducing method, which is usually used in classifications. This paper combines the two methods for face recognition. We first project the face images into a PCA subspace, then project the results into a much lower-dimensional LDA subspace, and then use an NNSRM classifier to recognize them in the LDA subspace. Experimental results demonstrate that the combined method can achieve a better performance than NN by selecting different distances and a comparable performance with SVM but costing less computational time.
Jiaxin Wang (Corresponding author)Email:

Danian Zheng   received his Bachelor degree in Computer Science and Technology in 2002 from Tsinghua University, Beijing, China. He received his Master degree and Doctoral degree in Computer Science and Technology in 2006 from Tsinghua University. He is currently a researcher in Fujitsu R&D Center Co. Ltd, Beijing, China. His research interests are mainly in the areas of support vector machines, kernel methods and their applications. Meng Na   received her Bachelor degree in Computer Science and Technology in 2003 from Northeastern, China. Since 2003 she has been pursuing the Master degree and the Doctoral degree at the Department of Computer Science and Technology at Tsinghua University. Her research interests are in the area of image processing, pattern recognition, and virtual human. Jiaxin Wang   received his Bachelor degree in Automatic Control in 1965 from Beijing University of Aeronautics and Astronautics, his Master degree in Computer Science and Technology in 1981 from Tsinghua University, Beijing, China, and his Doctoral degree in 1996 from Engineering Faculty of Vrije Universiteit Brussel, Belgium. He is currently a professor of Department of Computer Science and Technology, Tsinghua University. His research interests are in the areas of artificial intelligence, intelligent control and robotics, machine learning, pattern recognition, image processing and virtual reality.   相似文献   

14.
小波变换后的低频子带图像既去除了某些表情变化,又减小了数据量,而图像的频谱特征则具有良好分类特性,因此两者结合后得到的频谱脸在人脸识别方面具有相当高的应用价值。先利用小波变换和Fourier变换求得原始人脸图像的频谱脸(Spectrofaces),再对频谱脸继续求取各自的本征脸(Eigenface)和LDA(Linear Discriminant Analysis)特征作为分类特征,并利用了不同的分类方法进行识别。实验是利用ORL人脸库进行的,实验结果证明了比起直接利用空间域上原始图像的识别方法来说,基于频谱的方法可以有效提高识别率。  相似文献   

15.
基于部件的级联线性判别分析人脸识别   总被引:1,自引:0,他引:1  
文章提出一种基于人脸部件表示的级联线性判别分析人脸识别方法。该方法将人脸图像划分为具有交叠区域的多个部件,对每个部件应用线性判别分析以寻找该部件的判别方向,然后对所有部件应用线性判别分析以寻找总体最优判别方向。以从该级联线性判别分析提取的特征作为人脸描述。在FERET人脸库上的人脸识别和人脸确认的实验结果表明,该方法优于传统的基于全局图像的Fisherface方法。  相似文献   

16.
结合整体与局部信息的人脸识别方法   总被引:3,自引:0,他引:3  
汪宁  丁晓青 《计算机工程》2004,30(5):154-155,183
提出了一种综合利用整体和局部信息进行人脸识别的新方法。在对整幅人脸图像进行PCA分析的基础上辅以了局部区域的PCA LDA分析。在ORL的400幅人脸库上对此方法进行了验证,结果证明此方法是有效可行的,最优的识别率达到了97%,比仅利用完整图像的人脸识别方法有了不同程度的提高。  相似文献   

17.
基于分块PCA的人脸识别方法   总被引:3,自引:0,他引:3  
本文提出了一种称为M2PCA+FDA的新的人脸识别方法.新方法从模式的原始数字图像出发,先对样本图像进行分块,对分块得到的子图像矩阵采用PCA进行特征抽取,从而得到能代替原始模式的低维的新模式,然后,对新模式施行“Fisherfaces”方法,实现模式的分类.其特点是能有效地抽取图像的局部特征,正是这些特征使此类模式区别于彼类.在ORL和NUST603两个人脸数据库上对M2PCAA-FDA方法进行了测试,实验的结果表明,本文提出的方法在识别性能上优于“Fisherfaces”方法和PCA方法.  相似文献   

18.
结合零空间法和F-LDA的人脸识别算法   总被引:2,自引:0,他引:2  
王增锋  王汇源  冷严 《计算机应用》2005,25(11):2586-2588
线性判别分析(LDA)是一种常用的线性特征提取方法。传统LDA应用于人脸识别时主要存在两个问题:1)小样本问题,即由于训练样本不足引起矩阵奇异; 2)优化准则函数并不直接与识别率相关。提出了一种新的能同时解决以上两个问题的基于LDA的人脸识别算法。首先,通过重新定义样本的类内散布矩阵和类间散布矩阵,提出了一种新的零空间法。然后把这种新的零空间法与F LDA(Fractional LDA)算法相结合,得到一种对人脸识别更有效的特征提取方法。实验结果表明,这种新算法具有较高的识别率。  相似文献   

19.
PCA plus LDA is a popular framework for linear discriminant analysis (LDA) in high dimensional and singular case. In this paper, we focus on building a theoretical foundation for this framework. Moreover, we point out the weakness of the previous LDA based methods, and suggest a complete PCA plus LDA algorithm. Experimental results on ORL face image database indicate that the proposed method is more effective than the previous ones.  相似文献   

20.
张生亮  杨静宇 《计算机工程》2006,32(16):165-166
传统的特征抽取算法是基于向量的,在模式是图像时并不方便。二维投影方法利用图像矩阵直接计算,虽然抽取特征速度快,但抽取出的特征是矩阵,对应的特征数量大,影响分类速度。该文结合二者的优点,先用二维投影处理原始图像,降维后再做主分量分析,抽取出少量的特征进行分类,识别率和分类速度均有提高。在ORL人脸库上20次实验的平均识别率达95.83%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号