首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents a numerical simulation of micro‐crack initiation that is based on Tanaka‐Mura micro‐crack nucleation model. Three improvements were added to this model. First, multiple slip bands where micro‐cracks may occur are used in each grain. Second improvement deals with micro‐crack coalescence by extending existing micro‐cracks along grain boundaries and connecting them into a macro‐crack. The third improvement handles segmented micro‐crack generation, where a micro‐crack is not nucleated in one step like in Tanaka‐Mura model, but is instead generated in multiple steps. High cycle fatigue testing was also performed and showed reasonably good correlation of proposed model to experimental results. Because numerical model was directed at simulating fatigue properties of thermally cut steel, edge properties of test specimens were additionally inspected in terms of surface roughness and micro‐structural properties.  相似文献   

2.
Fatigue failure is the dominant mechanism that governs the failure of components and structures in many engineering applications. In conventional engineering applications due to the design specifications, a significant proportion of the fatigue life is spent in the crack initiation phase. In spite of the large number of works addressing fatigue life modelling, the problem of modelling crack initiation life still remains a major challenge in the scientific and engineering community. In the present work, we present a methodology for estimating fatigue crack initiation life using macroscale loading conditions and the microstructural phenomenon causing crack initiation. Microstructure sensitive modelling is used for predicting potential crack initiation life by employing randomly generated representative microstructures. The microstructural parameters contributing to crack initiation life are identified and accounted for by computing lattice level energy dissipation during fatigue crack initiation. This model is coupled with experimental results to improve the predictive capabilities and identification of potentially damaging weak points in the microstructures. The estimated values for crack initiation life were found to be in good agreement with the experimentally observed values of initiation life. The results have shown that this kind of approach could be successfully used to predict crack initiation life in polycrystalline materials. This work successfully provides an approach for estimating crack initiation life based upon numerical computations accounting for the microstructural phenomenon.  相似文献   

3.
A method for evaluating the cumulative damage resulting from the application of cyclic stress (or strain) sequences of varying amplitude is presented. Both the crack initiation and propagation stages of the fatigue failure process are included. The development is based on the concept of plastic strain energy dissipation as a function of cyclic life. The damage accumulated at any stage is evaluated from a knowledge of the fatigue limit in the initiation phase and an ‘apparent’ limit obtained through fracture mechanics for the propagation phase. The proposed damage theory is compared with two-level strain cycle test data of thin-walled specimens, and is found to be in fairly good agreement.  相似文献   

4.
Fatigue crack initiation life prediction is a fundamentally challenging problem that is of prime importance as a significant portion of the fatigue life is spent in the initiation phase. In spite of the extensive efforts of research over the past two decades, the concept of crack initiation still remains as an enigma in science. The major challenges in predicting crack initiation life in industry are the evaluation of the crack initiation parameters such as the maximum resolved shear stress range, maximum slip band width and the energy efficiency coefficient. In this paper, we show that the energy efficiency can be successfully estimated with good accuracy by performing lattice level crystal plasticity‐based computational simulations on representative models. The lattice level plasticity‐based finite element computations are reported for the case of single crystal copper in this work, and the results show that this strategy leads to higher accuracy than the existing idea of approximating the efficiency factor. The results show that this strategy could be of great use in improving the reliability in prediction of crack initiation life. The effectiveness of this computational procedure would greatly reduce the financial investments necessary to perform experimental analysis of all structures to determine the crack initiation parameters, as it would require just a single measurement to quantify the measurement of efficiency.  相似文献   

5.
Welded assemblies are commonly used in the shipbuilding industry. Because of the combination of stress concentration and cyclic loading, welded joints could be a critical area for fatigue damage. Thus, knowing stress and strain histories at the critical points of the structure is necessary, particularly when a confined plasticity occurs, to determine the fatigue life of welded assemblies. To avoid time‐consuming nonlinear finite element analyses (FEA), simplified estimation methods of the elastic–plastic strain/stress can be used. In a previous work, an approach to estimate stress state at critical points was developed and employed in the case of double‐notched specimens. The present paper focuses on welded joints in order to validate this strategy with the aim to estimate the fatigue crack initiation life of T‐joints. To go further, a parametric approach has been adopted to take into account the local geometries of welded joints and to determine the constraint operator without any FEA. The results predicted by this approach are compared with experimental fatigue results.  相似文献   

6.
This paper examines the overloading effect on the fatigue crack propagations monitored in a large‐scale tubular X‐joint specimen under two separate cyclic tests. The first cyclic test applies a constant‐amplitude brace in‐plane bending to the joint, with a single cycle of 150% overload before the crack depth reaches the mid‐thickness of the chord. The second fatigue test applies two batches of cyclic loads, with the amplitude of the second batch at 66% of the former. The X‐joint specimen experiences a 150% overload cycle during the first batch of loading, followed by the second batch after it has recovered from the overload effect. The experimental results reveal that deep surface cracks experience more significant overload retardation than does a shallow fatigue crack. The Paris law estimation indicates that the single overload cycle applied in the first specimen leads to a 7% increase in the fatigue life of the X‐joint.  相似文献   

7.
A new finite element (FE) framework for fatigue crack propagation (FCP) analysis is proposed. This framework combines the simplicity of standard industrial FCP analysis with the generality and accuracy of a full FE analysis and can be implemented on a small computer by combining standard existing computational tools. In this way it constitutes an attractive alternative to existing approaches. The framework is based on linear elastic fracture mechanics and on FE mesh adaptation. Some novel features are introduced in several of its steps in order to make it efficient and at the same time reasonably accurate. Various computational aspects of the scheme are discussed. A few two‐dimensional numerical examples involving FCP in thin sheets under plane‐stress conditions are presented to demonstrate the performance of the framework. Some of the numerical results are compared to those of laboratory experiments. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
The aim of this paper is to assess the very-high-cycle fatigue (VHCF) behaviour of a magnesium alloy (ZK60). Results indicate that the fatigue crack initiates from an area consisting of many distributed facets, while the region of early crack propagation is characterised by parallel traces, based on a fractographic analysis. The significant differences in morphology around the crack initiation area result from the interaction between the deformation twinning and the plastic zone at the crack tip. In addition, the fatigue crack propagation rate around the crack initiation site is also estimated based on a modified Murakami model. It is found that the formation stage for the fatigue crack is of great importance to the fatigue failure mechanism in the VHCF regime.  相似文献   

9.
Fatigue crack propagation (FCP) behaviour of 4003 ferritic stainless steel was investigated using infrared thermography. Four stages of superficial temperature evolution were observed during the FCP tests: an initial temperature decrease stage, a temperature equilibrium stage, a slow temperature increase stage and an abrupt temperature increase stage; a thermal model is developed to explain the observed temperature evolution. The experimental results indicate that: when the range of stress intensity factor (ΔK) is at a low level where the crack is located in slow propagation region, thermoelastic effect will be in dominant status; when the ΔK is at a high level where the crack is located in stable propagation region, the temperature rise can be used to describe FCP rate. The fatigue fracture surfaces were examined using scanning electron microscope (SEM) in order to understand the effect of the fatigue mechanisms on temperature variation.  相似文献   

10.
Fatigue crack propagation tests have been carried out under various load conditions. Hysteresis loops denoting the relationship between load and strain at the crack tip are obtained by using local compliance measurement. Crack growth acceleration, delayed retardation and non‐propagation phenomena are investigated by considering the variation of hysteresis loop expansion and hysteresis loop tail. Based on the physical meaning of hysteresis loops, two types of crack closure are ascertained and the effect of crack closure on fatigue crack propagation is studied. Results show that change of the effective amplitude of the stress intensity factor at the crack tip is the reason that crack propagation rates vary.  相似文献   

11.
Crack propagation during Stage I, in terms of crack initiation sites and growth directions and crack branching mechanisms under fretting conditions, is investigated using both experimental and theoretical approaches. Fretting tests were conducted on an aeronautical aluminium alloy. Two crack types are observed during Stage I corresponding, respectively, to specific mode I and II conditions. Transition from Stage I to Stage II is characterized for both crack types by a crack branching towards a new propagation direction of ≈65° to the specimen surface. Specific parameters linked to mode I and II propagation driving forces are proposed. Crack location and initial growth directions during Stage I are predicted in accordance with these parameters, and are in very good agreement with experimental observations. The conditions governing the transition from Stage I to Stage II are then identified. It is shown that under fretting conditions, cracks branch along a new direction, thereby maximizing the crack-opening amplitude.  相似文献   

12.
In hot milling process, rolling die is subjected to nonsteady conditions which can rise the combinations of fatigue and spalling damage mechanism. An understanding about the failure mechanism of the rolling die is essential under hot rolling process. Fatigue crack growth and spalling process are governed by highly concentrated strain and stress in the crack tip region. Based on the theory of elastic‐plastic fracture mechanics, an analytical model are presented in this paper to determine the elliptical crack growth rate and spalling damage mechanism. The model includes new proposed constitutive equations for fatigue and spalling crack growth. To verify the models, finite element simulation and experimental data are considered. The results show good agreement with finite element simulation and experimental data.  相似文献   

13.
This paper investigates the rolling contact fatigue life of kiln wheels with respect to the axis line deflection related with the applied supporting loads on wheels. Fatigue crack initiation criterions for elastic shakedown, plastic shakedown, and ratcheting material responses are applied to assess wheels responses with two sets of axial line deflection, one is measured in field and the other is optimal adjustment for the measured axial line deflection. The finite element simulations are performed by using the Bilinear material mode for nonlinear and kinematic hardening within ANSYS 11.0. By comparing life prediction from different criterions, it is showned that the low-cycle fatigue is the predominated failure. Results from different axial line deflection indicate that the optimum adjustment can greatly enhance the whole life of the supporting structure, that is useful for kiln adjustment and maintenance.  相似文献   

14.
The impact of residual stresses on the fatigue crack initiation life of welded joints is evaluated by the finite element method. The residual stresses of nonload‐carrying cruciform joints, induced by welding and ultrasonic impact treatment, are modelled by initial stresses, using the linear superposition principle. An alternative approach of using modified stress‐strain curves in the highly stressed zone is also proposed to account for the residual stress effect on the local stress‐strain history. An evaluation of the fatigue crack initiation life of welded joints based on the local strain approach is carried out. The predicted results show the effect of residual stresses and agree well with published experimental results of as‐welded and ultrasonic impact treated specimens, demonstrating the applicability of both approaches. The proposed approaches may provide effective tools to evaluate the residual stress effect on the fatigue crack initiation life of welded joints.  相似文献   

15.
Three‐dimensional finite element simulations were performed to study the growth of microstructurally small fatigue cracks in aluminium alloy 7075‐T651. Fatigue crack propagation through five different crystallographic orientations was simulated using crystal plasticity theory, and plasticity‐induced crack opening stresses were calculated. The computed crack opening stresses were used to construct small crack da/dN‐ΔK diagrams. The generated da/dN‐ΔK curves compared well with experimental small crack data from the literature. The variance observed among the da/dN‐ΔK results, which occurred as a consequence of the different crystallographic orientations employed, was found to be of the same order of magnitude as commonly observed variability in small fatigue crack growth data. This suggests that grain orientation is a major contributor to observed small fatigue crack data scatter.  相似文献   

16.
Over the last three decades, a variety of models have been developed in order to predict the life of components under fatigue. Some of the models are based on the definition of the fatigue process as a combination of the phases of crack initiation and crack propagation, considering component life as the sum of the duration of each phase. Other models consider only one of the phases; some consider only initiation while others only propagation, though in this case, from cracks with lengths in the order of the microstructural dimensions. This article will carry out a comparative analysis of the methods that consider life as the sum of the duration of both phases. In this same line, it proposes yet another method, which simulates crack growth according to damage theories. In analysing the behaviour of each model, this paper will describe various elements: the prediction that each of them produces regarding notched specimens submitted to testing, the advantages and inconveniences of each, and lastly, the possibilities of applying each of the models to more realistic geometries.  相似文献   

17.
Surface replication method was utilized to monitor the small fatigue crack initiation and growth process of single‐edge‐notch tension specimens fabricated by nickel base superalloy GH4169. Three different stress levels were selected. Results showed that small fatigue cracks of nickel base superalloy GH4169 initiated from grain boundaries or surface inclusions. The small fatigue crack initiation and growth stages took up about 80–90% of the total fatigue life. Multiple major cracks were observed in the notch root, and specimen with more major cracks seemed to have smaller fatigue life under the same test conditions. At the early growth stage, small crack behaviour might be strongly influenced by microstructures; thus, the crack growth rates had high fluctuations. However, the stress level effect on the small fatigue crack growth rates was not distinguishable for the three different stress levels. And no clear differences were found among the crack initiation lives by using replication technique.  相似文献   

18.
In this paper, a physics‐based multiscale approach is introduced to predict the fatigue life of crystalline metallic materials. An energy‐based and slip‐based damage criterion is developed to model two important stages of fatigue crack initiation: the nucleation and the coalescence of microcracks. At the microscale, a damage index is developed on the basis of plastic strain energy to represent the growing rate of a nucleated microcrack. A statistical volume element model with high computational efficiency is developed at the mesoscale to represent the microstructure of the material. Also, the formation of a major crack is captured by a coalescence criterion at mesoscale. At the macroscale, a finite element analysis of selected test articles including lug joint and cruciform is conducted with the statistical volume element model bridging two scale meshes. A comparison between experimental and simulation results shows that the multiscale damage criterion is capable of capturing crack initiation and predicting fatigue life.  相似文献   

19.
This paper presents a probabilistic fatigue crack growth life prediction methodology for spot‐welded joints under variable amplitude loading history. The loading is multi‐axial and is obtained from transient response analysis of a vehicle model using finite‐element analysis. A three‐dimensional (3D) finite element model of a simplified joint with four spot welds is developed, and the static stress analysis of this joint is performed. Then the fatigue crack inside the base material sheet is modelled as a surface crack. Probabilistic crack growth model is combined with the stress analysis result to develop a probabilistic fatigue crack growth life prediction methodology for spot welds. This new method is implemented with MSC/NASTRAN and MSC/FATIGUE and is useful for the reliability assessment of spot‐welded joints against fatigue crack growth.  相似文献   

20.
An attempt has been made to characterize high-cycle fatigue behaviour of high-strength spring steel wire by means of an ultrasonic fatigue test and analytical techniques. Two kinds of induction-tempered ultra-high-strength spring steel wire of 6.5 mm in diameter with a tensile strength of 1800 MPa were used in this investigation.
The fatigue strength of the steel wires between 106 and 109 cycles was determined at a load ratio R = −1. The experimental results show that fatigue rupture can occur beyond 107 cycles. For Cr–V spring wire, the stress–life ( S – N ) curve becomes horizontal at a maximum stress of 800 MPa after 106 cycles, but the S – N curve of the Cr–Si steel continues to drop at a high number of cycles (>106 cycles) and does not exhibit a fatigue limit, which is more correctly described by a fatigue strength at a given number of cycles. By using scanning electron microscopy (SEM), the crack initiation and propagation behaviour have been examined. Experimental and analytical techniques were developed to better understand and predict high-cycle fatigue life in terms of crack initiation and propagation. The results show that the portion of fatigue life attributed to crack initiation is more than 90% in the high-cycle regime for the steels studied in this investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号