首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study was to compare the effects of vacuum-condensed (CM) and ultrafiltered (UF) milk on some compositional and functional properties of Cheddar cheese. Five treatments were designed to have 2 levels of concentration (4.5 and 6.0% protein) from vacuum-condensed milk (CM1 and CM2) and ultrafiltered milk (UF1 and UF2) along with a 3.2% protein control. The samples were analyzed for fat, protein, ash, calcium, and salt contents at 1 wk. Moisture content, soluble protein, meltability, sodium dodecyl sulfate-PAGE, and counts of lactic acid bacteria and nonstarter lactic acid bacteria were performed on samples at 1, 18, and 30 wk. At 1 wk, the moisture content ranged from 39.2 (control) to 36.5% (UF2). Fat content ranged from 31.5 to 32.4% with no significant differences among treatments, and salt content ranged from 1.38 to 1.83% with significant differences. Calcium content was higher in UF cheeses than in CM cheeses followed by control, and it increased with protein content in cheese milk. Ultrafiltered milk produced cheese with higher protein content than CM milk. The soluble protein content of all cheeses increased during 30 wk of ripening. Condensed milk cheeses exhibited a higher level of proteolysis than UF cheeses. Sodium dodecyl sulfate-PAGE showed retarded proteolysis with increase in level of concentration. The breakdown of alphas1- casein and alphas1-I-casein fractions was highest in the control and decreased with increase in protein content of cheese milk, with UF2 being the lowest. There was no significant degradation of beta-casein. Overall increase in proteolytic products was the highest in control, and it decreased with increase in protein content of cheese milk. No significant differences in the counts of lactic starters or nonstarter lactic acid bacteria were observed. Extent as well as method of concentration influenced the melting characteristics of the cheeses. Melting was greatest in the control cheeses and least in cheese made from condensed milk and decreased with increasing level of milk protein concentration. Vacuum condensing and ultrafiltration resulted in Cheddar cheeses of distinctly different quality. Although both methods have their advantages and disadvantages, the selection of the right method would depend upon the objective of the manufacturer and intended use of the cheese.  相似文献   

2.
Cheese milk was standardized (casein-to-fat ratio of 0.7) by blending 0.64% fat milk and 35% fat cream. Cream was homogenized at 0/0 MPa (CO), 3.5/3.5 MPa (H05), 6.9/3.5 MPa (H10) or 10.4/3.5 MPa (H15). Cream homogenization did not influence rennet-clotting time, but it increased rate of curd firming and increased curd firmness of cheese milk. Moisture and salt in moisture phase of cheese increased with homogenization. Moisture (37%) and salt (1.5%) adjusted yield increased 1.42, 3.44 and 3.85% in H05, H10 and H15, respectively, over CO. Homogenized treatment cheeses melted faster with age. Free oil in 1 week old cheeses was lowest in H10 and highest in H05 and increased in all treatments with age. Cheese hardness was not influenced by homogenization but decreased with age. Cheeses with homogenized cream had improved body and texture and flavor. Cream homogenized at 6.9/3.5 MPa was optimal for enhancing Cheddar cheese yield and functionality.  相似文献   

3.
The effects of cream homogenization of cheese making milk on textural and sensory characteristics of Iranian White cheese were studied. Cream was homogenized in a two-stage homogenizer at 6.0/2.5 or 9.0/2.5 MPa. Cheese samples were analyzed for rheological parameters (uniaxial compression and small amplitude oscillatory shear), meltability, microstructure, and sensory characteristics. Cream homogenization increased fat content leading to increased meltability. This effect increased as the homogenization pressure increased. The values of storage modulus, stress at fracture and Young's modulus of elasticity for cheeses from homogenized treatments were lower than those of unhomogenized cheese. Cream homogenization at 6.0/2.5 MPa effectively improved the textural, functional and sensory characteristics and enhanced the yield of low-fat Iranian White cheese. This cheese had the lowest values of storage modulus and stress at fracture, probably due to the high number of small, evenly dispersed fat globules in microstructure and especially its lower protein content. Cheeses with homogenized cream had improved texture, flavor and appearance.  相似文献   

4.
The textural properties of Cheddar cheese made from ultrafiltered milk were assessed. Cheddar cheeses were prepared from 1.5- and 2.0-fold concentrated milk and ripened for three months. Textural characteristics of the UF cheeses were compared to control and commercial Cheddar cheeses by sensory and instrumental measures. The texture of cheese made from UF milk differed from the control commercial Cheddar cheeses. According to the trained sensory panel, the UF cheeses were harder and more rubbery, crumbly, chewy and grainy than the control and commercial Cheddar cheeses (P <0.01). The texture profile analysis (TPA), conducted using the Instron, did not correspond to the sensory measurements nor was it successful in discriminating among the cheese samples. Lack of agreement between the sensory and instrumental tests was attributed to differences in the testing conditions and procedures of the two methods. Instrumental tests should be validated against sensory measures in order to be useful as measures of palatability. Consumer preferences for the commercial, control and UF Cheddar cheeses were significantly different (P < 0.01), the UF cheeses being less preferred in terms of flavor, texture and overall acceptability.  相似文献   

5.
Sweet cream buttermilk (SCB) is a rich source of phospholipids (PL). Most SCB is sold in a concentrated form. This study was conducted to determine if different concentration processes could affect the behavior of SCB as an ingredient in cheese. Sweet cream buttermilk was concentrated by 3 methods: cold ( < 7°C) UF, cold reverse osmosis (RO), and evaporation (EVAP). A washed, stirred-curd pizza cheese was manufactured using the 3 different types of concentrated SCB as an ingredient in standardized milk. Cheesemilks of casein:fat ratio of 1.0 and final casein content ∼2.7% were obtained by blending ultrafiltered (UF)-SCB retentate (19.9% solids), RO-SCB retentate (21.9% solids), or EVAP-SCB retentate (36.6% solids) with partially skimmed milk (11.2% solids) and cream (34.6% fat). Control milk (11.0% solids) was standardized by blending partially skimmed milk with cream. Cheese functionality was assessed using dynamic low-amplitude oscillatory rheology, UW Meltprofiler (degree of flow after heating to 60°C), and performance of cheese on pizza. Initial trials with SCB-fortified cheeses resulted in ∼4 to 5% higher moisture (51 to 52%) than control cheese (∼47%). In subsequent trials, procedures were altered to obtain similar moisture content in all cheeses. Fat recoveries were significantly lower in RO- and EVAP-SCB cheeses than in control or UF-SCB cheeses. Nitrogen recoveries were not significantly different but tended to be slightly lower in control cheeses than the various SCB cheeses. Total PL recovered in SCB cheeses (∼32 to 36%) were lower than control (∼41%), even though SCB is high in PL. From the rheology test, the loss tangent curves at temperatures > 40°C increased as cheese aged up to a month and were significantly lower in SCB cheeses than the control, indicating lower meltability. Degree of flow in all the cheeses was similar regardless of the treatment used, and as cheese ripened, it increased for all cheeses. Trichloroacetic acid-soluble N levels were similar in the control and SCB-fortified cheese. On baked pizza, cheese made from milk fortified with UF-SCB tended to have the lowest amount of free oil, but flavor attributes of all cheeses were similar. Addition of concentrated SCB to standardize cheesemilk for pizza cheese did not adversely affect functional properties of cheese but increased cheese moisture without changes in manufacturing procedure.  相似文献   

6.
The objectives were to reduce bitterness in reduced-fat Cheddar cheese made with an exopolysaccharide (EPS)-producing culture and study relationships among ultra-filtration (UF), residual chymosin activity (RCA), and cheese bitterness. In previous studies, EPS-producing cultures improved the textural, melting, and viscoelastic properties of reduced-fat Cheddar cheese. However, the EPS-positive cheese developed bitterness after 2 to 3 mo of ripening due to increased RCA. We hypothesized that the reduced amount of chymosin needed to coagulate UF milk might result in reduced RCA and bitterness in cheese. Reduced-fat Cheddar cheeses were manufactured with EPS-producing and nonproducing cultures using skim milk or UF milk (1.2×) adjusted to a casein:fat ratio of 1.35. The EPS-producing culture increased moisture and RCA in reduced-fat Cheddar cheese. Lower RCA was found in cheese made from UF milk compared with that in cheese made from control milk. Ultrafiltration at a low concentration rate (1.2×) produced EPS-positive, reduced-fat cheese with similar RCA to that in the EPS-negative cheese. Slower proteolysis was observed in UF cheeses compared with non-UF cheeses. Panelists reported that UF EPS-positive cheese was less bitter than EPS-positive cheese made from control milk. This study showed that UF at a low concentration factor (1.2×) could successfully reduce bitterness in cheese containing a high moisture level. Because this technology reduced the RCA level (per g of protein) to a level similar to that in the control cheeses, the contribution of chymosin to cheese proteolysis would be similar in both cheeses.  相似文献   

7.
Cheddar cheese was made from milk concentrated twofold by ultrafiltration (UF). Lowering the cooking and cheddaring temperature from 39°C to 35°C resulted in faster acid development, promoted more proteolysis, caused faster degradation of lactose, and contributed smoother body and texture to the cheese. Starter culture at 2% by weight of unconcentrated milk in combination with low cooking and cheddaring temperature reduced pH at faster rate and shortened the cheese making time by approximately 45 min, compared to cheese made using the traditional temperature (39°C). For the traditional temperature (39°C) of cooking and cheddaring, the addition of 0.2 mL/ kg rennet of unconcentrated milk produced the same rate of proteolysis in both control and cheese made from UF retentate. Composition (fat, protein, salt and moisture) and yield of the UF cheeses with modified temperature treatments were not significantly different from control.  相似文献   

8.
The effects of using cold ultrafiltered (UF) retentates (both whole and skim milk) on the coagulation, yield, composition, and ripening of Parmesan cheese were investigated. Milks for cheese making were made by blending cold UF retentates with partially skimmed milk to obtain blends with 14.2% solids and a casein:fat ratio of 1.1. Cutting times, as selected by the cheese-maker, were approximately 15 and approximately 20 min for experimental and control milks, respectively. Storage modulus values at cutting were similar, but yield stress values were significantly higher in UF retentate standardized milks. Cheese yields were significantly higher in UF retentate standardized milks (approximately 12%) compared with control milk (cream removed) (approximately 7 to 8%). Significantly higher protein recoveries were obtained in cheeses manufactured using cold UF retentates. There were no differences in the pH and moisture contents of the cheeses prior to brining, and there was no residual lactose or galactose left in the cheeses. Using UF retentates resulted in a significant reduction in whey volume as well as a higher proportion of protein in the solids of the whey. Proteolysis, free fatty acids, and sensory properties of the cheeses were similar. The use of milk concentrated by cold UF is a promising way of improving the yield of Parmesan cheese without compromising cheese quality. The question remaining to be answered by the cheesemaker is whether it is economical to do so.  相似文献   

9.
Our objective was to optimize the process for making low-fat cheeses using liquid pre-cheeses obtained by ultrafiltration (UF). The study was conducted to examine the effects of using different proportions of cow, sheep, and goat milk in different compositions on the characteristics of cheeses, and to determine the effect of heating of the retentate on texture. Using ultrafiltered semi-skim milk (total protein content of retentate of 13–14%), cheeses with acceptable quality and reduced fat content were produced. Heating of the retentate produced by UF at 68–72°C, 20 s, improved cheese texture.  相似文献   

10.
《International Dairy Journal》2000,10(5-6):375-382
Fortification of Cheddar cheese with vitamin D was tested using three different addition methods to cheesemilk at a final concentration of 400 IU L−1: addition of a commercial water-soluble emulsion of vitamin D (Vitex D); homogenization of crystalline liposoluble vitamin D in a portion of cream used for cheesemilk standardization; and addition of water-soluble vitamin D entrapped in multilamellar liposomes (Prolipo-DuoTM). The recovery of vitamin D in cheese curd, losses in whey and stability of vitamin D during cheese making and ripening over a 7 months period were measured. The method of vitamin D addition did not affect significantly the composition of experimental cheeses (protein, fat, moisture and salt), which was not different from that of control cheeses made without vitamin D. The recovery of vitamin D in cheese was significantly higher when vitamin D was entrapped in liposomes (61.5±5.4%) than for vitamin D homogenized in cream (40.5±2.2%) and for Vitex D (42.7±1.7%). Vitamin D concentration in experimental cheeses was stable for 3–5 months of ripening depending on the addition method, but decreased thereafter, particularly with liposome-encapsulated vitamin D. Vitamin D concentration after 7 months of ripening was very similar for all experimental cheeses, and corresponded to approximately 60, 89 and 84% of that measured after production in cheese fortified by vitamin D in liposomes, cream, and Vitex D, respectively.  相似文献   

11.
The occurrence of l(+)-lactate crystals in hard cheeses continues to be an expense to the cheese industry. Salt tolerance of the starter culture and the salt-to-moisture ratio (S:M) in cheese dictate the final pH of cheese, which influences calcium lactate crystal (CLC) formation. This research investigates these interactions on the occurrence of CLC. A commercial starter was selected based on its sensitivity to salt, less than and greater than 4.0% S:M. Cheddar cheese was made by using either whole milk (3.25% protein, 3.85% fat) or whole milk supplemented with cream and ultrafiltered milk (4.50% protein, 5.30% fat). Calculated amounts of salt were added at milling (pH 5.40 ± 0.02) to obtain cheeses with less than 3.6% and greater than 4.5% S:M. Total and soluble calcium, total lactic acid, and pH were measured and the development of CLC was monitored in cheeses. All cheeses were vacuum packaged and gas flushed with nitrogen gas and aged at 7.2°C for 15 wk. Concentration of total lactic acid in high S:M cheeses ranged from 0.73 to 0.80 g/100 g of cheese, whereas that in low S:M cheeses ranged from 1.86 to 1.97 g/100 g of cheese at the end of 15 wk of aging because of the salt sensitivity of the starter culture. Concentrated milk cheeses with low and high S:M exhibited a 30 to 28% increase in total calcium (1,242 and 1,239 mg/100 g of cheese, respectively) compared with whole milk cheeses with low and high S:M (954 and 967 mg/100 g of cheese, respectively) throughout aging. Soluble calcium was 41 to 35% greater in low S:M cheeses (low-salt whole milk cheese and low-salt concentrated milk cheese; 496 and 524 mg/100 g of cheese, respectively) compared with high S:M cheeses (high-salt whole milk cheese and high-salt concentrated milk cheese; 351 and 387 mg/100 g of cheese, respectively). Because of the lower pH of the low S:M cheeses, CLC were observed in low S:M cheeses. However, the greatest intensity of CLC was observed in gas-flushed cheeses made with milk containing increased protein concentration because of the increased content of calcium available for CLC formation. These results show that the occurrence of CLC is dependent on cheese milk concentration and pH of the cheese, which can be influenced by S:M and cheese microflora.  相似文献   

12.
Milk was concentrated by ultrafiltration (UF) or vacuum condensing (CM) and milks with 2 levels of protein: 4.5% (UF1 and CM1) and 6.0% (UF2 and CM2) for concentrates and a control with 3.2% protein were used for manufacturing 6 replicates of Cheddar cheese. For manufacturing pasteurized process cheese, a 1:1 blend of shredded 18- and 30-wk Cheddar cheese, butter oil, and disodium phosphate (3%) was heated and pasteurized at 74°C for 2 min with direct steam injection. The moisture content of the resulting process cheeses was 39.4 (control), 39.3 (UF1), 39.4 (UF2), 39.4 (CM1), and 40.2% (CM2). Fat and protein contents were influenced by level and method of concentration of cheese milk. Fat content was the highest in control (35.0%) and the lowest in UF2 (31.6%), whereas protein content was the lowest in control (19.6%) and the highest in UF2 (22.46%). Ash content increased with increase in level of concentration of cheese milk with no effect of method of concentration. Meltability of process cheeses decreased with increase in level of concentration and was higher in control than in the cheeses made with concentrated milk. Hardness was highest in UF cheeses (8.45 and 9.90 kg for UF1 and UF2) followed by CM cheeses (6.27 and 9.13 kg, for CM1 and CM2) and controls (3.94 kg). Apparent viscosity of molten cheese at 80°C was higher in the 6.0% protein treatments (1043 and 1208 cp, UF2 and CM2) than in 4.5% protein treatments (855 and 867 cp, UF1 and CM1) and in control (557 cp). Free oil in process cheeses was influenced by both level and method of concentration with control (14.3%) being the lowest and CM2 (18.9%) the highest. Overall flavor, body and texture, and acceptability were higher for process cheeses made with the concentrates compared with control. This study demonstrated that the application of concentrated milks (UF or CM) for Cheddar cheese making has an impact on pasteurized process cheese characteristics.  相似文献   

13.
The impact of concentrating whole milk by reverse osmosis prior to Cheddar cheese making was studied. Heat treated, standardized, whole milk was reduced in volume by 0, 5, 10, 15, and 20% prior to Cheddar cheese manufacture. Milk solids at various milk volume reductions were 11.98, 12.88, 13.27, 14.17, and 15.05%, respectively. Permeates contained only traces of organic matter and would not create a significant by-product handling problem for a cheese plant. Solids content of the whey from cheese making increased with increasing milk concentration. Proximate compositions of reverse osmosis cheeses were comparable to control cheeses. Fat losses decreased, and fat retained in the cheese increased with increasing milk solids concentration. Improved fat recovery in the cheese was related to the amount of mechanical homogenization of milk fat during the concentration process. Actual, composition adjusted, and theoretical cheese yields were determined. Increased retention of whey solids and improved fat recovery gave cheese yield increases of 2 to 3% above expected theoretical yields at 20% milk volume reduction. Water removal from whole milk prior to Cheddar cheese manufacture gave increased productivity and cheese yield without requiring different cheese-making equipment or manufacturing procedures.  相似文献   

14.
In a previous study, ultrafiltration (UF) at 1.2x reduced residual chymosin activity and bitterness in exopolysaccharide (EPS)-positive reduced fat Cheddar cheese. The objective of this research was to study the effect of this level of concentration on the textural and functional characteristics of the reduced fat cheese. Ultrafiltration (1.2x) did not affect the hardness, cohesiveness, adhesiveness, chewiness, and gumminess of EPS-positive cheese. The 6-month old UF cheeses were springier than non-UF cheeses. However, the springiness of the EPS-positive cheese made from UF milk was much lower than that of the EPS-negative cheeses. Texture of the EPS-negative cheese was more affected by UF than that of the EPS-positive cheese. Differences were seen in the extent of flow between UF and non-UF cheeses at 1 and 3-months but not after 6 months ripening. Ultrafiltration increased the elastic modulus in the 6-month old EPS-positive cheeses. Higher body and texture scores were given to EPS-positive cheeses than the EPS-negative ones. Sensory panelists found the body of the UF and non-UF cheeses to be similar.  相似文献   

15.
Reduced-fat Cheddar cheese (RFC) was manufactured from standardized milk (casein/fat, C/F ˜ 1.8), obtained by (1) mixing whole milk (WM) and skim milk (SM) (control) or (2) mixing liquid milk protein concentrate (LMPC) and 35% fat cream (experimental). The percentage yield, total solid (TS) and fat recoveries in the experimental RFC were 22.0, 63.0 and 89.5 compared to 9.0, 50.7 and 87.0 in the control RFC, respectively. The average % moisture, fat, protein, salt and lactose were 40.7, 15.3, 32.8, 1.4 and 0.07%, respectively, in the experimental cheese and 39.3, 15.4, 33.0, 1.3 and 0.10%, respectively, in the control cheese. No growth of nonstarter lactic acid bacteria (NSLAB) was detected in the control or the experimental cheeses up to 3 months of ripening. After 6 months of ripening, the experimental cheese had 107 cfu NSLAB/g compared to 106 cfu/g in the control. The control cheese had higher levels of water-soluble nitrogen (WSN) and total free amino acids after 6 months of ripening than the experimental cheese. Sensory analysis showed that the experimental cheeses had lower intensities of milk fat and fruity flavours and decreased bitterness but higher intensities of sulphur and brothy flavours than in the control cheese. The experimental cheeses were less mature compared to the control after 270 days of ripening. It can be concluded from the results of this study that LMPC can be used in the manufacture of RFC to improve yield, and fat and TS recovery. However, proteolysis in cheese made with LMPC and cream is slower than that made with WM and SM.  相似文献   

16.
Gas-flushed packaging is commonly used for cheese shreds and cubes to prevent aggregation and loss of individual identity. Appearance of a white haze on cubed cheese is unappealing to consumers, who may refrain from buying, resulting in lost revenue to manufacturers. The objective of this study was to determine whether gas flushing of Cheddar cheese contributes to the occurrence of calcium lactate crystals (CLC). Cheddar cheese was manufactured using standard methods, with addition of starter culture, annatto, and chymosin. Two different cheese milk compositions were used: standard (lactose:protein = 1.47, protein:fat = 0.90, lactose = 4.8%) and ultrafiltered (UF; lactose:protein = 1.23, protein:fat = 0.84, lactose = 4.8%), with or without adjunct Lactobacillus curvatus. Curds were milled when whey reached 0.45% titratable acidity, and pressed for 16 h. After aging at 7.2°C for 6 mo, cheeses were cubed (1 × 1 × 4 cm) and either vacuum-packaged or gas-flushed with carbon dioxide, nitrogen, or a 50:50 mixture of carbon dioxide and nitrogen, then aged for an additional 3 mo. Heavy crystals were observed on surfaces of all cubed cheeses that were gas-flushed, but not on cheeses that were vacuum-packaged. Cheeses without Lb. curvatus exhibited l(+)-CLC on surfaces, whereas cheeses with Lb. curvatus exhibited racemic mixtures of l(+)/d(−)-CLC throughout the cheese matrices. The results show that gas flushing (regardless of gas composition), milk composition, and presence of nonstarter lactic acid bacteria, can contribute to the development of CLC on cheese surfaces. These findings stress the importance of packaging to cheese quality.  相似文献   

17.
18.
《Journal of dairy science》2021,104(10):10500-10512
In the manufacture of cream cheese, sweet cream and milk are blended to prepare the cream cheese mix, although other ingredients such as condensed skim milk and skim milk powder may also be included. Whey cream (WC) is an underutilized fat source, which has smaller fat droplets and slightly different chemical composition than sweet cream. This study investigated the rheological and textural properties of cream cheeses manufactured by substituting sweet cream with various levels of WC. Three different cream cheese mixes were prepared: control mix (CC; 0% WC), cream cheese mixes containing 25% WC (25WC; i.e., 75% sweet cream), and cream cheese mixes with 75% WC (75WC; i.e., 25% sweet cream). The CC, 25WC, and 75WC mixes were then used to manufacture cream cheeses. We also studied the effect of WC on the initial step in cream cheese manufacture (i.e., the acid gelation process monitored using dynamic small amplitude rheology). Acid gels were also prepared with added denatured whey proteins or membrane proteins/phospholipids (PL) to evaluate how these components affected gel properties. The rheological, textural, and sensory properties of cream cheeses were also measured. The WC samples had significantly higher levels of PL and insoluble protein compared with sweet cream. An increase in the level of WC reduced the rate of acid gel development, similar to the effect of whey phospholipid concentrate added to mixes. In cream cheese, an increase in the level of added WC resulted in significantly lower storage modulus values at temperatures <20°C. Texture results, obtained from instrumental and sensory analyses, showed that high level of WC resulted in significantly lower firmness or hardness values and higher stickiness compared with cream cheeses made with 25WC or CC cream cheeses. The softer, less elastic gels or cheeses resulting from the use of high levels of WC are likely due to the presence of components such as PL and proteins from the native milk fat globule membrane. The use of low levels of WC in cream cheese did not alter the texture, whereas high levels of WC could be used if manufacturers want to produce more spreadable products.  相似文献   

19.
The Cheddar cheese colorant annatto is present in whey and must be removed by bleaching. Chemical bleaching negatively affects the flavor of dried whey ingredients, which has established a need for a better understanding of the primary colorant in annatto, norbixin, along with cheese color alternatives. The objective of this study was to determine norbixin partitioning in cheese and whey from full-fat and fat-free Cheddar cheese and to determine the viability of bixin, the nonpolar form of norbixin, as an alternative Cheddar cheese colorant. Full-fat and fat-free Cheddar cheeses and wheys were manufactured from colored pasteurized milk. Three norbixin (4% wt/vol) levels (7.5, 15, and 30 mL of annatto/454 kg of milk) were used for full-fat Cheddar cheese manufacture, and 1 norbixin level was evaluated in fat-free Cheddar cheese (15 mL of annatto/454 kg of milk). For bixin incorporation, pasteurized whole milk was cooled to 55°C, and then 60 mL of bixin/454 kg of milk (3.8% wt/vol bixin) was added and the milk homogenized (single stage, 8 MPa). Milk with no colorant and milk with norbixin at 15 mL/454 kg of milk were processed analogously as controls. No difference was found between the norbixin partition levels of full-fat and fat-free cheese and whey (cheese mean: 79%, whey: 11.2%). In contrast to norbixin recovery (9.3% in whey, 80% in cheese), 1.3% of added bixin to cheese milk was recovered in the homogenized, unseparated cheese whey, concurrent with higher recoveries of bixin in cheese (94.5%). These results indicate that fat content has no effect on norbixin binding or entrapment in Cheddar cheese and that bixin may be a viable alternative colorant to norbixin in the dairy industry.  相似文献   

20.
Compositional changes in raw and pasteurized cream and unconcentrated sweet cream buttermilk (SCB) obtained from a local dairy were investigated over 1 yr. Total phospholipid (PL) composition in SCB ranged from 0.113 to 0.153%. Whey protein denaturation in pasteurized cream over 1 yr ranged from 18 to 59%. Pizza cheese was manufactured from milk standardized with condensed SCB (∼34.0% total solids, 9.0% casein, 17.8% lactose). Effects of using condensed SCB on composition, yield, PL recovery, and functional properties of pizza cheese were investigated. Cheesemilks were prepared by adding 0, 2, 4, and 6% (wt/wt) condensed SCB to part-skim milk, and cream was added to obtain cheesemilks with ∼11.2 to 12.7% total solids and casein:fat ratio of ∼1. Use of condensed SCB resulted in a significant increase in cheese moisture. Cheese-making procedures were modified to obtain similar cheese moisture contents. Fat and nitrogen recoveries in SCB cheeses were slightly lower and higher, respectively, than in control cheeses. Phospholipid recovery in cheeses was below 40%. Values of pH and 12% trichloro-acetic acid-soluble nitrogen were similar among all treatments. Cheeses made from milk standardized with SCB showed less melt and stretch than control cheese, especially at the 4 and 6% SCB levels. Addition of SCB significantly lowered free oil at wk 1 but there were no significant differences at wk 2 and 4. Use of SCB did not result in oxidized flavor in unmelted cheeses. At low levels (e.g., 2% SCB), addition of condensed SCB improved cheese yield without affecting compositional, rheological, and sensory properties of cheese.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号