首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, an adaptive fuzzy output feedback control approach based on backstepping design is proposed for a class of SISO strict feedback nonlinear systems with unmeasured states, nonlinear uncertainties, unmodeled dynamics, and dynamical disturbances. Fuzzy logic systems are employed to approximate the nonlinear uncertainties, and an adaptive fuzzy state observer is designed for the states estimation. By combining backstepping technique with the fuzzy adaptive control approach, a stable adaptive fuzzy...  相似文献   

2.
In this paper, an adaptive fuzzy backstepping robust control approach is proposed for a class of SISO nonlinear strict‐feedback systems. The nonlinear systems addressed in this paper are assumed to possess three uncertainties: (i) the unstructured uncertainties; (ii) the time delays; and (iii) the dynamics uncertainties. In adaptive backstepping recursive design, fuzzy logic systems are used to approximate the unstructured uncertainties. A nonlinear damping technique and Lyapunov–Krasovskii functions are introduced to cancel the effects of the dynamics uncertainties and deal with the time delays, respectively. Combining the backstepping technique and a small gain approach, a stable adaptive fuzzy robust control approach is developed. It is proved that all the signals of the closed‐loop system are semi‐golablly uniformaly ultimately bounded (SUUB). The effectiveness of the proposed approach is illustrated by a simulation example.  相似文献   

3.
In this paper, an adaptive fuzzy output feedback control approach is developed for a class of SISO nonlinear uncertain systems with unmeasured states and unknown virtual control coefficients. The fuzzy logic systems are used to model the uncertain nonlinear systems. The MT-filters and the state observer are designed to estimate the unmeasured states. Using backstepping design principle and combining the Nussbaum gain functions, an adaptive fuzzy output feedback control scheme is developed. It is proved that the proposed adaptive fuzzy control approach can guarantee all the signals in the closed-loop system are semi-globally uniformly ultimately bounded and the tracking error converges to a small neighborhood of origin. A simulation is included to illustrate the effectiveness of the proposed approach.  相似文献   

4.
In this paper, a new fuzzy adaptive control approach is developed for a class of SISO strict-feedback nonlinear systems, in which the nonlinear functions are unknown and the states are not available for feedback. By fuzzy logic systems to approximate the unknown nonlinear functions, a fuzzy adaptive high-gain observer is designed to estimate the unmeasured states. Under the framework of the backstepping design, fuzzy adaptive output feedback control is constructed recursively. It is shown that the proposed fuzzy adaptive control approach guarantees the semi-global boundedness property for all the signals of the resulting closed-loop system. Simulation results are included to illustrate the effectiveness of the proposed techniques.  相似文献   

5.
In this paper, an adaptive fuzzy robust output feedback control approach is proposed for a class of SISO nonlinear strict-feedback systems with unknown sign of high-frequency gain and the unmeasured states. The nonlinear systems addressed in this paper are assumed to possess the unmodeled dynamics, dynamical disturbances and unknown nonlinear functions, where the unknown nonlinear functions are not linearly parameterized, and no prior knowledge of their bounds is available. In the recursive designing, fuzzy logic systems are used to approximate the unknown nonlinear functions, K-filters are designed to estimate the unmeasured states, and a dynamical signal and Nussbaum gain functions are introduced to handle the unmodeled dynamics and the unknown sign of the high-frequency gain, respectively. Based on Lyapunov function method, a stable adaptive fuzzy output feedback control scheme is developed. It is mathematically proved that the proposed adaptive fuzzy control approach can guarantee that all the signals of the closed-loop system are uniformly ultimately bounded, the output converges to a small neighborhood of the origin. The effectiveness of the proposed approach is illustrated by the simulation examples.  相似文献   

6.
In this paper, a fuzzy adaptive backstepping design procedure is proposed for a class of nonlinear systems with three types of uncertainties: (i) nonlinear uncertainties; (ii) unmodeled dynamics and (iii) dynamic disturbances. The fuzzy logic systems are used to approximate the nonlinear uncertainties, nonlinear damping terms are used to counteract the dynamic disturbances and fuzzy approximation errors, and a dynamic signal is introduced to dominate the unmodeled dynamics. The derived fuzzy adaptive control approach guarantees the global boundedness property for all the signals and states, and at the same time, steers the output to a small neighborhood of the origin. Simulation studies are included to illustrate the effectiveness of the proposed approach.  相似文献   

7.
In this paper, an adaptive fuzzy decentralized backstepping output feedback control approach is proposed for a class of uncertain large‐scale stochastic nonlinear systems without the measurements of the states. The fuzzy logic systems are used to approximate the unknown nonlinear functions, and a fuzzy state observer is designed for estimating the unmeasured states. Using the designed fuzzy state observer, and by combining the adaptive backstepping technique with dynamic surface control technique, an adaptive fuzzy decentralized output feedback control approach is developed. It is shown that the proposed control approach can guarantee that all the signals of the resulting closed‐loop system are semi‐globally uniformly ultimately bounded in probability, and the observer errors and the output of the system converge to a small neighborhood of the origin by choosing appropriate design parameters. A simulation example is provided to show the effectiveness of the proposed approaches. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
A novel adaptive fuzzy controller with H/sub /spl infin// performance is proposed for a wide class of strict-feedback canonical nonlinear systems. The systems may possess a class of uncertainties referred to as unstructured uncertain functions, which are not linearly parameterized and have no prior knowledge of the bound. The Takagi-Sugeno-type fuzzy logic systems are used to approximate the uncertainties and a systematic design procedure is developed for synthesis of adaptive fuzzy control with H/sub /spl infin// performance, which combines the backstepping technique and generalized small gain approach. The method preserves the three advantages, those are, the semiglobal uniform ultimate bound of adaptive control in the presence of unstructured uncertainties can be guaranteed, the adaptive mechanism with only one learning parameter is obtained and the possible controller singularity problem in some of the existing adaptive control schemes with feedback linearization techniques can be removed. Performance and limitations of proposed method are discussed and illustrated with simulation results.  相似文献   

9.
In this paper, a direct adaptive fuzzy robust control approach is proposed for single input and single output (SISO) strict-feedback nonlinear systems with nonlinear uncertainties, unmodeled dynamics and dynamical disturbances. No prior knowledge of the boundary of the nonlinear uncertainties is required. Fuzzy logic systems are used to approximate the intermediate stabilizing functions, and a stable direct adaptive fuzzy backstepping robust control approach is developed by combining the backstepping technique with the fuzzy adaptive control theory. The stability of the closed-loop system and the convergence of the system output are proved based on the small-gain theorem. Simulation studies are conducted to illustrate the effectiveness of the proposed approach.  相似文献   

10.
In this paper, an adaptive fuzzy robust feedback control approach is proposed for a class of single-input and single-output (SISO) strict-feedback nonlinear systems with unknown nonlinear functions, time delays, unknown high-frequency gain sign, and without the measurements of the states. In the backstepping recursive design, fuzzy logic systems are employed to approximate the unknown smooth nonlinear functions, K-filters is designed to estimate the unmeasured states, and Nussbaum gain functions are introduced to solve the problem of unknown sign of high-frequency gain. By combining adaptive fuzzy control theory and adaptive backstepping design, a stable adaptive fuzzy output feedback control scheme is developed. It has been proven that the proposed adaptive fuzzy robust control approach can guarantee that all the signals of the closed-loop system are uniformly ultimately bounded and the tracking error can converge to a small neighborhood of the origin by appropriately choosing design parameters. Simulation results have shown the effectiveness of the proposed method.  相似文献   

11.
In this paper, a robust adaptive neural network (NN) backstepping output feedback control approach is proposed for a class of uncertain stochastic nonlinear systems with unknown nonlinear functions, unmodeled dynamics, dynamical uncertainties and without requiring the measurements of the states. The NNs are used to approximate the unknown nonlinear functions, and a filter observer is designed for estimating the unmeasured states. To solve the problem of the dynamical uncertainties, the changing supply function is incorporated into the backstepping recursive design technique, and a new robust adaptive NN output feedback control approach is constructed. It is mathematically proved that the proposed control approach can guarantee that all the signals of the resulting closed-loop system are semi-globally uniformly ultimately bounded in probability, and the observer errors and the output of the system converge to a small neighborhood of the origin by choosing design parameters appropriately. The simulation example and comparison results further justify the effectiveness of the proposed approach.  相似文献   

12.
In this paper, an adaptive fuzzy decentralized output feedback control approach is presented for a class of uncertain nonlinear pure‐feedback large‐scale systems with immeasurable states. Fuzzy logic systems are utilized to approximate the unknown nonlinear functions, and a fuzzy state observer is designed to estimate the immeasurable states. On the basis of the adaptive backstepping recursive design technique, an adaptive fuzzy decentralized output feedback is developed. It is proved that the proposed control approach can guarantee that all the signals of the resulting closed‐loop system are semiglobally uniformly ultimately bounded (SUUB), and that the observer and tracking errors converge to a small neighborhood of the origin by appropriate choice of the design parameters. Simulation studies are included to illustrate the effectiveness of the proposed approach. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper,a new fuzzy adaptive control approach is developed for a class of SISO uncertain pure-feedback nonlinear systems with immeasurable states.Fuzzy logic systems are utilized to approximate the unknown nonlinear functions;and the filtered signals are introduced to circumvent algebraic loop systems encountered in the implementation of the controller,and a fuzzy state adaptive observer is designed to estimate the immeasurable states.By combining the adaptive backstepping technique,an adaptive fuzzy output feedback control scheme is developed.It is proven that the proposed control approach can guarantee that all the signals of the resulting closed-loop system are semi-globally uniformly ultimately bounded(SGUUB),and the observer and tracking errors converge to a small neighborhood of the origin by appropriate choice of the design parameters.Simulation studies are included to illustrate the efectiveness of the proposed approach.  相似文献   

14.
In this paper, a novel robust adaptive fuzzy variable structure control (RAFVSC) scheme is proposed for a class of uncertain nonlinear systems. The uncertain nonlinear system and gain functions originating from modeling errors and external disturbances are all unstructured (or non-repeatable), state-dependent and completely unknown. The Takagi–Sugeno type fuzzy logic systems are used to approximate uncertain functions in the systems and the RAFVSC is designed by use of the input-to-state stability (ISS) approach and small gain theorem. In the algorithm, there are three advantages which are that the asymptotic stability of adaptive control in the presence of unstructured uncertainties can be guaranteed, the possible controller singularity problem in some of existing adaptive control schemes using feedback linearization techniques can be removed and the adaptive mechanism with minimal learning parameterizations can be achieved. The performance and effectiveness of the proposed methods are discussed and illustrated with two simulation examples.  相似文献   

15.
In this paper, a back‐stepping adaptive fuzzy controller is proposed for strict output feedback nonlinear systems. The unknown nonlinearity and external disturbances of such systems are considered. We assume that only the output of the system is available for measurement. As a result, two filters are constructed to estimate the states of strict output feedback systems. Since fuzzy systems can uniformly approximate nonlinear continuous functions to arbitrary accuracy, the adaptive fuzzy control theory combined with a tuning function scheme is developed to derive the control laws of strict output feedback systems that possess unknown functions. Moreover, the H∞ performance condition is introduced to attenuate the effect of the modeling error and external disturbances. Finally, an example is simulated in order to confirm the applicability of the proposed method.  相似文献   

16.
This paper investigates the problem of global output feedback regulation for a class of nonlinear systems with unknown time delay. It is also allowed to contain uncertain functions of all the states and input as long as the uncertainties satisfying certain bounded condition for the considered systems. In this paper, a constructive control technique has been proposed for controlling the systems. By using dynamic high-gain scaling approach and choosing an appropriate Lyapunov-Krasovskii functional, a delay-independent robust adaptive output feedback controller is constructed such that the states of the considered systems achieve global regulation. Two simulation examples are provided to demonstrate the effectiveness of the proposed design scheme.  相似文献   

17.
This paper deals with the adaptive output feedback control problem of a class of uncertain nonlinear systems with an unknown non-symmetric dead-zone nonlinearity. The nonlinear system considered here is dominated by a triangular system without zero dynamics satisfying polynomial growth in the unmeasurable states. An adaptive control scheme is developed without constructing the dead-zone inverse. The proposed adaptive control scheme requires only the information of bounds of the slopes and the breakpoint of dead-zone nonlinearity. The novelty of this paper is that a universal-type adaptive output feedback controller is numerically constructed by using a sum of squares (SOS) optimization algorithm, which ensures the boundedness of all the signals in the adaptive closed-loop without knowing the growth rate of the uncertainties. An example is presented to show the effectiveness of the proposed approach.  相似文献   

18.
In this paper, a new fuzzy-neural adaptive control approach is developed for a class of single-input and single-output (SISO) nonlinear systems with unmeasured states. Using fuzzy neural networks to approximate the unknown nonlinear functions, a fuzzy- neural adaptive observer is introduced for state estimation as well as system identification. Under the framework of the backstepping design, fuzzy-neural adaptive output feedback control is constructed recursively. It is proven that the proposed fuzzy adaptive control approach guarantees the global boundedness property for all the signals, driving the tracking error to a small neighbordhood of the origin. Simulation example is included to illustrate the effectiveness of the proposed approach.  相似文献   

19.
针对一类具有未建模动态和输出约束的输出反馈非线性系统, 提出一种自适应输出反馈动态面控制方案. 利用神经网络逼近未知连续函数, 分别设计K滤波器和动态信号估计不可测量的状态, 并处理动态不确定性. 引入障碍李雅普诺夫函数并设计自适应控制器以保证BLF有界, 从而实现输出约束. 理论分析表明, 闭环控制系统是半全局一致终结有界的, 且满足输出约束, 仿真结果验证了所提出方案的有效性.  相似文献   

20.
本文研究在平均驻留时间约束下,一类含有执行器故障的切换非线性系统输出反馈自适应模糊事件触发容错控制问题.首先,建立了一个模态依赖的状态观测器估计不可测量状态.利用模糊逻辑系统来逼近未知项.其次,构建自适应模糊容错事件触发控制方案能够节省网络资源和数据传输.然后,通过构造多Lyapunov函数和平均驻留时间法,证明闭环系统所有状态半全局一致最终有界的同时排除了Zeno现象.最后,通过数值仿真验证该方法的有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号