首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
采用高温固相法合成了Al2O3修饰的Li1 xV3O8自正极材料,用X射线衍射、恒电流充放电实验、循环伏安法等对材料的结构和电化学性能进行了表征.结果表明Al2O3修饰使得Li1 xV3O8材料的层间距离增大,材料的导电性能和电化学反应的可逆性提高.当Al2O3含量为6mol%时,Li1 xV3O8表现出良好的循环性能,首次放电容量达到219mAh/g,10次循环后容量保持率为92.3%.  相似文献   

2.
利用液相沉淀法合成得到超细、粒径分布窄的球形V2O5,以该V2O5和LiOH*H2O为原料在较低温度下煅烧得到棒状Li1+xV3O8颗粒.采用XRD、SEM对样品的结构和形貌分别进行了表征.并在电压为1.8~3.8V范围,放电倍率为0.2C对制备的电极材料进行了电池性能测量.结果表明,采用比传统固相法低的温度和时间可以获得单斜晶系的纯相Li1+xV3O8.450℃合成的Li1+xV3O8首次放电比容量达到275mAh/g,550℃合成的Li1+xV3O8在循环15次后的比容量保持率为85%.  相似文献   

3.
直接利用微波将溶胶一凝胶制备的干凝胶前驱体于450℃下快速合成了纯相、晶粒发育度较低的层状Li1 xV3O8.通过XRD、C-V和循环充放对样品的电化学性能进行了测试,结果表明,(100)晶面取向显著降低,2.5V放电平台明显.室温下,截止电压4~2V范围内,首次放电比容量迭318mAh/g.各项性能均优于传统固相法合成的材料.  相似文献   

4.
微波碳热还原法合成锂离子电池正极材料Li_2FeSiO_4/C   总被引:3,自引:0,他引:3  
以Li2CO3、FeOOH、纳米Si O2为原料,聚乙烯醇和超导碳为碳源,采用微波碳热合成法合成了Li2FeSi O4/C材料。通过XRD、SEM和恒流充放电测试,对样品结构、形貌和电化学性能进行了表征和分析。结果表明,微波合成法可以快速制备具有正交结构的Li2FeSi O4材料;在处理温度650℃、时间12min的条件下获得了高纯度、晶粒细小均匀的产物,并具有良好的电化学性能。以C/20倍率进行充放电测试,首次放电容量为127.5mAh/g,20次循环后容量仍有124mAh/g。  相似文献   

5.
采用高温固相法制备样品Li1.12Ni0.8Mn0.1Co0.1O2,采用XRD(X-ray diffraction)、SEM(Scanning electron microscope)、CV(Cycle voltammograms)和充放电循环等测试分析了材料的物理化学性质及电化学性能。XRD分析表明在合成温度为800℃时,所合成的产物为α-NaFeO2型的层状结构;SEM分析表明在合成温度为800℃时,产物为微小晶粒团聚成的球形颗粒。在40mA/g和2.5~4.3V的电压范围内,其首次放电比容量为184.1mAh/g,首次放电效率为85.9%。随着充放电次数的增多,材料的不可逆放电容量逐步减小,循环稳定性增强。循环20周后放电比容量仍能达到171.7mAh/g,容量保持率为93.26%。测试结果表明,800℃合成的正极材料Li1.12Ni0.8-Mn0.1Co0.1O2具有较高的放电比容量和优异的电化学稳定性。  相似文献   

6.
采用机械球磨结合微波法合成了Cr3+掺杂锂离子电池正极材料Li1-xCrxFePO4。通过X射线衍射(XRD)、扫描电镜(SEM)和恒电流充放电测试研究了Cr3+掺杂方式和掺杂量对样品的物相结构、形貌和电化学性能的影响。实验结果表明,微波法可以快速合成Li1-xCrxFePO4正极材料;以共沉淀掺杂方式合成的样品Li0.99Cr0.01-FePO4具有最好的电化学性能,在室温下以20mA/g进行充放电测试,其首次放电容量为153.59mAh/g,10次循环之后还有149.29mAh/g,容量保持率为97.20%。  相似文献   

7.
采用固相法合成了掺杂Zn2+的锂离子电池负极材料Li4-2xZn3xTi5-xO12(0≤3x≤0.2)。对材料进行了SEM、XRD、激光粒度分析、振实密度、循环伏安测试及恒电流充放电测试。Zn2+的掺杂未改变材料的晶体结构,但使材料的振实密度有了明显提高,达到了1.56g/cm3。实验结果表明,Zn2+的掺杂改善了Li4Ti5O12的电化学性能,降低了电极的极化,提高了Li4Ti5O12的循环稳定性;当各元素摩尔比为n(Li)∶n(Zn)∶n(Ti)=3.933∶0.100∶4.967时,材料的电化学性能较优,1C首次放电比容量可达到151mAh/g,经过60次循环后,放电容量保持在138mAh/g。  相似文献   

8.
合成温度对Li2FeSiO4/C电化学性能的影响   总被引:5,自引:1,他引:4  
采用球磨掺碳及固相法合成锂离子电池正极材料Li2FeSiO4/C,研究了合成温度对材料结构和电化学性能的影响.用X射线衍射(XRD)、扫描电镜(SEM)对材料的结构与形貌进行了表征;并对不同焙烧温度下合成的Li2FeSiO4/C材料的电化学性能进行了研究.结果表明,650℃合成的Li:FeSiO4/C电化学性能最佳,在C/16的倍率下首次放电容量达到144.8mAh/g,10次循环后容量仍保持有136.5mAh/g.  相似文献   

9.
采用溶胶凝胶法合成了不同温度下的锂离子电池正极材料LiNi0.05Mn1.95O3.95F0.05.使用X射线衍射对合成材料的结构进行了表征.考察烧结温度对其结构及电化学性能的影响.随着烧结温度的升高,尖晶石型结构越来越完整,初始放电比容量增大,但循环性能却逐渐变差.在750℃T烧结温度12h得到了性能较好的LiNi0.05Mn1.95O3.95F0.05,首次放电比容量为109.7mAh/g,50次循环后,其放电比容量仍保持在101.6mAh/g,适合作为锂离子电池的正极材料.  相似文献   

10.
采用二步固相烧结法制备了Li4TiO12负极材料,优化了制备工艺条件.利用X射线衍射分析(XRD)、扫描电镜(SEM)等表征了材料的形貌和结构,并用充放电测试仪、循环伏安(CV)和交流阻抗(EIS)研究了材料的电化学性能.结果表明,合成的Li4Ti5O12具有单一的尖晶石结构和良好的电化学性能,0.1C首次放电比容量为158.9 mAh/g,循环20次后容量保持率为97.6%,1C倍率首次放电比容量为108.9mAh/g,循环20次后容量下降了3.05%.  相似文献   

11.
锂离子电池正极材料Li1+xV3O8合成技术研究进展   总被引:3,自引:0,他引:3  
层状的Li1 xV3O8电池正极材料具有比容量高、循环寿命长、价格便宜等优点,有望成为新一代锂离子二次电池的正极材料。综述了层状的Lil xV3O8正极材料的结构、性质、制备技术、掺杂技术、电化学性能以及影响电极材料性能的各因素。其中重点总结了Li1 xV3O8正极材料的制备技术,包括高温固相合成技术、低温合成技术和掺杂技术。指出溶胶-凝胶法和经脱水处理的电极材料在综合性能上取得了一定突破,有望实现产业化生产。  相似文献   

12.
利用不同的锂化合物Li2CO3、LiOH.H2O、LiNO3、LiF作为锂源,采用二步固相法合成了LiFePO4/C,研究了不同锂源对LiFePO4组织结构和电化学性能的影响。结果表明,在相同的合成工艺条件下,采用4种不同锂源合成的LiFePO4的电化学性能表现出明显差异。采用LiOH.H2O合成的LiFe-PO4的电化学性能最佳,0.1C下的放电比容量为161mAh/g,1C下的放电比容量达117mAh/g,且0.5C下循环容量无衰减。采用不同锂源合成的LiFePO4电化学性能差异的原因与LiFePO4的颗粒大小、粒径分布、团聚程度及是否存在杂相有直接关系。  相似文献   

13.
以Na2SiO3.9H2O和FeCl2.4H2O为原料,采用低热固相反应获得了分散均匀的β-FeOOH/SiO2前驱体;再以Li2CO3为锂源、聚乙烯醇和超导电炭黑为复合碳源,通过微波辅助固相法合成了Li2FeSiO4/C材料.通过X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)和恒电流充放电测试等方法对材料的结构、微观形貌及电化学性能进行表征.650℃下微波处理12 min可获得结晶好、晶粒细小均匀的Li2FeSiO4/C材料;在选用的微波合成体系下,超导碳和聚乙烯醇热分解的无定形碳不仅利于合成反应的顺利进行,而且提高了Li2FeSiO4的整体导电性能.制备的复合正极材料在60℃下0.05C倍率首次放电容量为129.6 mAh/g,0.5C倍率下为107.5 mAh/g,0.5C下15次循环后保持为104.8 mAh/g,具有较好的放电比容量和良好的循环稳定性能.结果表明,微波辅助固相合成工艺是制备Li2FeSiO4/C复合材料的一种很有前景的方法.  相似文献   

14.
钛离子掺杂对LiFePO4结构和性能的影响   总被引:1,自引:0,他引:1  
为提高LiFePO4的充放电性能,用Ti(Ⅳ)对LiFePO4进行掺杂.用电化学方法测量了Li1-xTixFePO4的充放电性能,用X射线衍射和里特沃尔特方法表征了掺杂LiFePO4的晶体结构.固相反应可以制备单相Li1-xTixFePO4(x=0.00、0.01、0.02、0.03、0.05和0.07,摩尔分数),其中Li0.98Ti0.02FePO4具有更好的电化学性能,在80mA/g的充放电电流下,第2次的放电比容量为136.606mAh/g,循环20次后为128.388mAh/g.研究表明,少量钛离子掺杂不仅改变了原子间距和位置、引起晶胞收缩,而且增加了LiFePO4中Fe^3+/Fe^2+共存态的浓度,提高了材料的导电能力,从而能有效地提高LiFePO4的比容量和循环性能.  相似文献   

15.
以TiO_2粉末和NaOH为原料,在机械外力场作用下,采用水热法制备TiO_2纳米线。随后将得到的TiO_2纳米线与六水合硝酸钴(Co(NO_3)_2·6H_2O)和尿素(Urea)共同水热反应制备TiO_2/Co_3O_4纳米结构材料。分别利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、电池充放电测试仪和电化学工作站等,对材料的相组成、微观形貌、锂电性能和阻抗性能进行测试。结果表明,TiO_2/Co_3O_4纳米复合材料为鸟巢状结构,其在33.5mA/g电流密度下恒电流充放电的首次放电容量为777mAh/g,充电容量为759mAh/g,100次循环后的可逆容量仍保持在663mAh/g,具有良好的循环稳定性和电化学特性。  相似文献   

16.
钒酸锂化合物的制备和性能   总被引:5,自引:0,他引:5  
采用一种新的方法合成LiV3O8化合物,以LiOH、V2O5和NH3H2O为反应物质,先合成出含有Li和V的反应前驱物质,再用焙烧的方法生成最终产物.X射线试验结果发现,产物在(100)方向上的衍射峰强度与用传统方法得到的产物相比明显降低.充放电结果显示,当电流为0.3mA/cm2时,在1.8~4.0V区间内,产物的首次放电比容量达到264mAh/g,循环15次后仍能达到249mAh/g.  相似文献   

17.
将钛源、锂源和碳源三种化合物一起球磨湿混成均匀浆料,再依次经过喷雾干燥和高温煅烧制得晶粒表面包覆纳米碳层的多孔球形钛酸锂(Li4Ti5O12)材料.通过XRD、SEM、TEM、BET和电化学性能测试等分析手段表明,合成出的Li4Ti5O12/C材料为纳米一次粒子(晶粒)组成的球形二次粒子(颗粒),具有较大的比表面积,达到39.5 m2/g;在0.1C、1.0C和5.0C倍率下的首次放电比容量分别达到172.2、168.2和153.6 mAh/g,并表现出优良的循环性能.晶粒表面包覆碳的多孔Li4Ti5O12材料具有明显的高倍率性能和循环稳定性优势.  相似文献   

18.
带直流电弧等离子体气相蒸发法制备球状Al纳米粒子,并对其进行了XRD、TEM以及电极的脱/嵌锂离子循环性能表征。结果表明,制备出的Al粒子大小约为100 nm,表面包覆一层厚度不到1nm的非晶氧化物。使用Al纳米粒子制做的负极极片组装电池,研究了电流密度对其电化学特性的影响。结果表明,电池的首次充放电曲线和前10次循环性能曲线表明,电流密度最小的Al电极首次放电容量最大,为951.9 mAh/g.首次容量损失也最大,其循环稳定性能也相应变差:而电流密度最大的Al电极首次放电容量为879.7mAh/g,其循环稳定性能最佳。首次放电结束后,在电极材料中出现了两种化合物AlLi和Al2Li3,与测试出的放电容量相符。  相似文献   

19.
Layered LiCo1/3Ni1/3Mn1/3O2 as a lithium insertion positive-electrode material was prepared by a radiated polymer gel method. The synthesis conditions and microstructure, morphology and electrochemical properties of the products were investigated by XRD, SEM and electrochemical cell cycling. It was found that the positive-electrode material annealed at 950 °C showed the best electrochemical property with the first specific discharge capacity of 178 mAh/g at C/6 and stable cycling ability between 2.8 and 4.5 V versus Li/Li+. The optimized LiCo1/3Ni1/3Mn1/3O2 exhibited rather good rate capability with the specific capacity of 173 mAh/g at 0.2C and 116 mAh/g at 4C under a fast charge and discharge mode in rate performance test.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号