首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shengyuan  Tongwen   《Automatica》2004,40(12):2091-2098
This paper deals with the problem of H output feedback control for uncertain stochastic systems with time-varying delays. The parameter uncertainties are assumed to be time-varying norm-bounded. The aim is the design of a full-order dynamic output feedback controller ensuring robust exponential mean-square stability and a prescribed H performance level for the resulting closed-loop system, irrespective of the uncertainties. A sufficient condition for the existence of such an output feedback controller is obtained and the expression of desired controllers is given.  相似文献   

2.
On control for linear systems with interval time-varying delay   总被引:1,自引:1,他引:1  
Xiefu  Qing-Long   《Automatica》2005,41(12):2099-2106
This paper deals with the problem of delay-dependent robust H control for linear time-delay systems with norm-bounded, and possibly time-varying, uncertainty. The time-delay is assumed to be a time-varying continuous function belonging to a given interval, which means that the lower and upper bounds for the time-varying delay are available, and no restriction on the derivative of the time-varying delay is needed, which allows the time-delay to be a fast time-varying function. Based on an integral inequality, which is introduced in this paper, and Lyapunov–Krasovskii functional approach, a delay-dependent bounded real lemma (BRL) is first established without using model transformation and bounding techniques on the related cross product terms. Then employing the obtained BRL, a delay-dependent condition for the existence of a state feedback controller, which ensures asymptotic stability and a prescribed H performance level of the closed-loop systems for all admissible uncertainties, is proposed in terms of a linear matrix inequality (LMI). A numerical example is also given to illustrate the effectiveness of the proposed method.  相似文献   

3.
This paper investigates the problem of robust exponential H static output feedback controller design for a class of discrete-time switched linear systems with polytopic-type time-varying parametric uncertainties. The objective is to design a switched static output feedback controller guaranteeing the exponential stability of the resulting closed-loop system with a minimized exponential H performance under average dwell-time switching scheme. Based on a parameter-dependent discontinuous switched Lyapunov function combined with Finsler’s lemma and Dualization lemma, some novel conditions for exponential H performance analysis are first proposed and in turn the static output feedback controller designs are developed. It is shown that the controller gains can be obtained by solving a set of linear matrix inequalities (LMIs), which are numerically efficient with commercially available software. Finally, a simulation example is provided to illustrate the effectiveness of the proposed approaches.  相似文献   

4.
This article considers the problem of H control for two-dimensional (2-D) singular delayed systems in Roesser models. The problem to be addressed is the design of a state feedback controller such that the acceptability, internal stability and causality of the resulting closed-loop system is guaranteed and a prescribed H performance level is ensured. In terms of a linear matrix inequality (LMI), a sufficient condition for the solvability of the problem is obtained. A desired state feedback controller can be designed by solving a certain LMI. A numerical example is provided to demonstrate the application of the proposed method.  相似文献   

5.
This paper investigates the robust H control and non-fragile control problems for Takagi-Sugeno (T-S) fuzzy systems with linear fractional parametric uncertainties. The robust H control problem is to design a state feedback controller such that the robust stability and a prescribed H performance of the resulting closed-loop system is ensured. And the non-fragile H control problem is to design a state feedback controller with parameter uncertainties. Based on the linear matrix inequality (LMI) approach, new sufficient conditions for the solvability of the two problems are obtained. It is shown that the desired state feedback fuzzy controller can be constructed by solving a set of LMIs. Numerical examples are also provided to demonstrate the effectiveness of the proposed design method.  相似文献   

6.
This paper discusses the problem of robust H control for linear discrete time two-dimensional (2-D) singular Roesser models (2-D SRM) with time-invariant norm-bounded parameter uncertainties. The purpose is the design of static output feedback controllers such that the resulting closed-loop system is acceptable, jump modes free, stable and satisfies a prescribed H performance level for all admissible uncertainties. A version of bounded realness of 2-D SRM is established in terms of linear matrix inequalities. Based on this, a sufficient condition for the solvability of the robust H control problem is solved, and a desired output feedback controller can be constructed by solving a set of matrix inequalities. A numerical example is provided to demonstrate the applicability of the proposed approach.  相似文献   

7.
In this paper, control of linear differential-algebraic-equation systems, subject to general quadratic constraints, is considered. This setup, especially, includes the H control problem and the design for strict passivity. Based on linear matrix inequality (LMI) analysis conditions, LMI synthesis conditions for the existence of linear output feedback controllers are derived by means of a linearizing change of variables. This approach is constructive: a procedure for the determination of controller parameterizations is given on the basis of the solution of the LMI synthesis conditions. A discussion of the possible applications of the presented results concludes the paper.  相似文献   

8.
This paper focus on a stabilization problem for a class of nonlinear systems with periodic nonlinearities, called pendulum-like systems. A notion of Lagrange stabilizability is introduced, which extends the concept of Lagrange stability to the case of controller synthesis. Based on this concept, we address the problem of designing a linear dynamic output controller which stabilizes (in the Lagrange sense) a pendulum-like system within the framework of the H control theory. Lagrange stabilizability conditions for uncertainty-free systems and systems with norm-bounded uncertainty in the linear part are derived, respectively. When these conditions are satisfied, the desired stabilization output feedback controller can be constructed via feasible solutions of a certain set of linear matrix inequalities (LMIs).  相似文献   

9.
This paper focuses on H filtering for a class of linear periodic systems with a certain type of norm-bounded time-varying parameter uncertainty which appears in both the state and output matrices. The problem addressed is the design of a linear periodic estimator that guarantees both the quadratic stability and and prescribed H performance on infinite horizon for the estimation error for all admissible parameter uncertainties. A solution to this problem is obtained via a Riccati equation approach.  相似文献   

10.
This article investigates the problem of designing H dynamic output feedback controllers for nonlinear systems, which are described by affine fuzzy models. The system outputs have been chosen as premise variables, which can guarantee that the plant and the controller always switch to the same region. By using a piecewise Lyapunov function and adding slack matrix variables, a piecewise-affine dynamic output feedback controller design method is obtained in the formulation of linear matrix inequalities (LMIs), which can be efficiently solved numerically. In contrast to the existing work, the proposed approach needs less LMI constraints and leads to less conservatism. Finally, numerical examples illustrate the effectiveness of the new result.  相似文献   

11.
In this paper, delay-dependent robust stabilization and H∞ control for uncertain stochastic Takagi-Sugeno (T-S) fuzzy systems with discrete interval and distributed time-varying delays are discussed. The purpose of the robust stochastic stabilization problem is to design a memoryless state feedback controller such that the closed-loop system is mean-square asymptotically stable for all admissible uncertainties. In the robust H∞ control problem, in addition to the mean-square asymptotic stability requirement, a prescribed H∞ performance is required to be achieved. Sufficient conditions for the solvability of these problems are proposed in terms of a set of linear matrix inequalities (LMIs) and solving these LMIs, a desired controller can be obtained. Finally, two numerical examples are given to illustrate the effectiveness and less conservativeness of our results over the existing ones.  相似文献   

12.
In this paper, a new approach is investigated for adaptive dynamic neural network-based H control, which is designed for a class of non-linear systems with unknown uncertainties. Currently, non-linear systems with unknown uncertainties are commonly used to efficiently and accurately express the real practical control process. Therefore, it is of critical importance but a great challenge and still at its early age to design a stable and robust controller for such a process. In the proposed research, dynamic neural networks were constructed to precisely approximate the non-linear system with unknown uncertainties first, a non-linear state feedback H control law was designed next, then an adaptive weighting adjustment mechanism for dynamic neural networks was developed to achieve H regulation performance, and last a recurrent neural network was employed as a neuro-solver to efficiently and numerically solve the standard LMI problem so as to obtain the appropriate control gains. Finally, case studies further verify the feasibility and efficiency of the proposed research.  相似文献   

13.
In this paper, the problem of robust sampled-data H control of linear uncertain singularly perturbed systems is investigated. The parametric uncertainties are assumed to be time-varying and norm-bounded. Two types of controller design are considered: (1) with a fast sampling in the fast state and a slow one in the slow state, and (2) with a fast sampling in both states. For each type, a time-dependent Lyapunov functional associated with the sampling pattern is introduced to analyse the exponential stability and L2-gain performance of the closed-loop system. Linear matrix inequalities based solutions of the robust sampled-data H control problem are derived. The new results are proved theoretically to be less conservative than the existing results. An illustrative example is given which substantiates the usefulness of the proposed method.  相似文献   

14.
In this paper, we design an H controller for a class of lower-triangular time-delay systems. Backstepping is applied to construct an explicit feedback controller, and the closed-loop system maintains internal stability and an L2-gain from the disturbance input to the output. The design is delay-dependent. Simulations on an example system demonstrate the good performance of the proposed design.  相似文献   

15.
In this paper, the problem of robust H control is investigated for sampled-data systems with probabilistic sampling. The parameter uncertainties are time-varying norm-bounded and appear in both the state and input matrices. For the simplicity of technical development, only two different sampling periods are considered whose occurrence probabilities are given constants and satisfy Bernoulli distribution, which can be further extended to the case with multiple stochastic sampling periods. By applying an input delay approach, the probabilistic sampling system is transformed into a continuous time-delay system with stochastic parameters in the system matrices. By linear matrix inequality (LMI) approach, sufficient conditions are obtained, which guarantee the robust mean-square exponential stability of the system with an H performance. Moreover, an H controller design procedure is then proposed. An illustrative example is included to demonstrate the effectiveness of the proposed techniques.  相似文献   

16.
In this paper, the problem of static output feedback control of a linear system is considered. The existence of a static output feedback control law is given in terms of the solvability of two coupled Lyapunov inequalities which result in a non-linear optimisation problem. However, using state-coordinate and congruence transformations and by imposing a block-diagonal structure on the Lyapunov matrix, we will see that the determination of a static output feedback gain reduces, for a specific class of plants, to finding the solution of a system of linear matrix inequalities. The class of plants considered is those which are minimum phase with a full row rank Markov parameter. The method is extended to incorporate H performance objectives. This results in a sub-optimal static H control law found by non-iterative means. The simplicity of the method is demonstrated by a numerical example.  相似文献   

17.
This article studies that the robust consensus problem for high-order multi-agent systems with time-delay, which are subjected to external disturbances and communication uncertainties. An approach based on the weighting matrix is introduced to meet the requirement that the peak value of controlled output is often required into a certain range. Then, a dynamic model of high-order multi-agent systems is established. Using a feedback controller and interactions from the neighbours including uncertainties, a linear control protocol is proposed for the systems with networks under fixed or switching topologies. Sufficient conditions in terms of linear matrix inequalities are derived to make all the agents reach robust consensus with the prescribed L 2???L performance. A numerical simulation is provided to demonstrate the effectiveness of the proposed protocol.  相似文献   

18.
This paper mainly focuses on the problem of non-fragile H dynamic output feedback control for a class of uncertain Takagi–Sugeno fuzzy systems with time-varying state delay. Based on a new type of Lyapunov–Krasovskii functional without ignoring any subtle integral terms in the derivatives, a less conservative dynamic output feedback controller with additive gain variations is designed, which guarantees that the closed-loop fuzzy system is asymptotically stable and satisfies a prescribed H-performance level. Furthermore, the obtained parameter-dependent conditions are given in terms of solution to a set of linear matrix inequalities, which improve some existing relevant results. Finally, numerical examples are given to illustrate the effectiveness and merits of the proposed method.  相似文献   

19.
This article focuses on the problems of robust stabilisation and H control for nonlinear uncertain stochastic systems with mode-dependent time delay and Markovian jump parameters represented by the Takagi–Sugeno (T-S) fuzzy model approach. The system under consideration involves parameter uncertainties, Itô-type stochastic disturbances, Markovian jump parameters and unknown nonlinear disturbances. The purpose is to design a state feedback controller such that the closed-loop system is robustly exponentially stable in the mean square and satisfies a prescribed H performance level. Novel delay-range-dependent conditions in the form of linear matrix inequalities (LMIs) are derived for the solvability of robust stabilisation and H control problem. A desired fuzzy controller can be constructed by solving a set solutions of LMIs and can be easily calculated by Matlab LMI control toolbox. Finally, a numerical example is presented to illustrate the proposed method.  相似文献   

20.
This paper proposes the design of the integrated output feedback and iterative learning control (ILC) for batch processes with uncertain perturbations and interval time-varying delays, where the main idea is to transform the design into a robust delay-range-dependent H control of a 2D system described by a state-space model with varying delays. A sufficient criterion for delay-dependent H noise attenuation is derived through linear matrix inequality (LMI) by introducing a comprehensive 2D difference Lyapunov–Krasovskii functional candidate and adding a differential inequality to the difference in the Lyapunov function for the 2D system. Based on the criterion obtained, the delay-range-dependent output feedback controller combined with ILC is then developed. The developed system ensures that the closed-loop system for all admissible uncertainties is asymptotically stable and has a prescribed H performance level in terms of the LMI constraint. The controller is obtained by solving an LMI optimization problem with simple calculations and less constraint conditions. Moreover, the conditions can also be directly extended from delay-range-dependent to general delay-dependent stability. Applications in injection velocity control demonstrate the effectiveness and feasibility of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号