首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Mg(2-x)MxNi氢化物储氢性能的一种计算方法   总被引:1,自引:0,他引:1  
通过对Mg(2-x)MxNi(M=Ti,Ag,Al)储氢合金材料的焓变、熵变、吸氢量与组成和键参数之间关系的分析,建立了焓变、熵变和吸氢量的半经验数学模型,得出影响焓变、熵变、平衡氢压和吸氢量的主要因素及其显著性的大小。结果表明:在所研究的合金体系中,电负性差△X和弹性模量G增大,则氢化物的生成焓△H^0负值减小,原子尺寸δ增大时,氢化物的H^0负值增大。氢化物的△S^0随着△X增大而增大。合金弹性模量、原子尺寸、电荷半径和温度越高,材料的储氢量越大,而电子密度越大,材料的储氢量反而越小。  相似文献   

2.
Sn对稀土系贮氢合金性能的影响   总被引:5,自引:0,他引:5  
研究了Sn替代贮氢合金LaNi5、MlNi5(Ml=富镧混合稀土)中部分Ni对合金的结构、吸氢容量和平衡氢压等性能的影响。用X射一衍射进行物相分析,测试了298K,313K、333K温度下合金的吸、放氢p-c-t曲线。结果表明:NlNi5xSnx合金(x=0,0.1)为六方晶体结构的单相组织。以Sn部分取代ni,使平台压力阴低吸、放氢滞后减小,而吸氢能力降低很小。利用电负性、电子浓度及原了尺寸等参  相似文献   

3.
非化学计量比混合稀土—镍系贮氢合金的研究   总被引:9,自引:0,他引:9  
本文研究了非化学计量比混合稀土-镍系贮氢合金MmBx的配比数x对合金结构、热力学性能和金属氢化物(MH)电极充放电发性能的影响。随着配比数x的减小,合金晶胞体积和金属氢化物生成焓(-ΔH)增加,平台压力降低且与配比x有lnpeq=1.99x-11.13的关系。当x〈5.0时,合金在CaCu5型主相之外析出Ce2Ni7第二相,该第二相具有较高的电催化活性。x〈5.0时,合金电极具有较高的初容量和活化  相似文献   

4.
系统研究了Ml1-xCaxNi5系贮氢合金的氢化物稳定性(以合金的氢化物的放氢平台压力来表征)及其影响因素。提出了Ca部分取代Ml后对Ml1-xCaxNi5系贮氢合金的氢化物的稳定性影响的两个因素,即几何因素和电子因素,并由此导出了合金的氢化物的放氢平台压力与合金晶胞体积的关系式:lnP=-1.14858V2+195.5624V-8322.0562理论曲线与实验结果吻合。  相似文献   

5.
混合稀土贮氢合金(Ml)xNi3.8Co0.75Mn0.4Ti0.05)相结构 …   总被引:3,自引:0,他引:3  
对(Ml)x(Ni3.8Co0.75MnTi0.05)合金(x=0.90~1.10)的相结构,热力学性能及合金电极的充放电性能进行了研究。结果表明:在x〈1.00的成分范围内,合金保持单一的LaNi5相;当x≥1.00时,合金中析出多种第二相,且总量随x的增加而增多。随着x的增加,合金的晶胞体积及氢化物生成焓(-ΔH)增大,吸放氢平台压力降低,宽度增加。合金的最大放电容量在x=1.00时达到最大值  相似文献   

6.
制备了La(Ni,Co,Mn,Ti)5,Ce(Ni,Co,Mn,Ti)5,Pr(Ni,Co,Mn,Ti)5和Nd(Ni,Co,Mn,Ti)5四种单一稀土贮氢电极合金,分别测定了它们的单胞体积、氢化物生成焓和几个主要的电化学性能指标(包括活化循环次数、最大放电容量、高倍率放电率和容量衰退速率),以分析不同稀土元素对合金电化学性能的影响.结果表明,在四种合金中,单胞体积对合金的热力学性质和电化学性能起了决定性作用,它与合金的氢化物生成焓呈简单的线性关系,对电化学性能有双重影响,使四个主要指标随单胞体积的变化均出现极大或极小值.单胞体积本身的变化与稀土元素的周期性有关.  相似文献   

7.
贮氢合金     
贮氢合金能吸收相当于自身体积 10 0 0倍左右的氢气 ,在室温附近能反复进行吸放氢 ,这较之液态氢能将体积相当于它 80 0倍左右的氢气液化有利得多。贮氢合金几乎都是吸氢的金属 (碱土类金属 ,第 3族~第 5族金属及Pd)与不吸氢的金属 (除Pd以外的第 6族~第 12族金属 )组合而成的合金。大多根据吸氢金属来对贮氢合金加以分类 ,下表列出了一些主要的贮氢合金的吸氢量、氢平衡压以及氢化物的生成焓。合金 吸氢量x(MHx)吸氢量% (质量 ) 分类 1分类 2 结晶构造(合金 )结晶构造(氢化物 )平衡压力 (温度 )P(T)/MPa ,(K)氢化物生成焓…  相似文献   

8.
Fe0.85Mn0.15Ti0.9M0.1(M=Zr,V,Ca)合金的贮氢性能   总被引:2,自引:0,他引:2  
系统地研究了Fe0.85Mn0.15Ti0.9M0.1(M=Zr,V,Ca)合金的贮氢性能。研究结果表明:Fe0.85Mn0.15Ti0.9Zr0.1合金在室温下经几分钟的孕育期就可吸氢,但合金在氢化过程中形成了氢含量很高的α相,导致合金的贮氢量降低,同时还使p-c-T曲线的平台特性变差;Fe0.85Mn015Ti0.9V0.1合金的活化性能进上步得到改善,在室温下几乎不需要孕育期就可以吸氢,但同  相似文献   

9.
NL—Ni—Co—Mn—Al合金吸氢动力学   总被引:5,自引:0,他引:5  
林勤  李蓉  叶文  陈宁  刘人敏 《金属学报》1996,32(6):624-628
应用特制双层水恒温反应器和动力学机理函数计算机拟合的方法,在303—343K温度范围内研究了ML—Ni—Co—Mn—Al五元系和ML—Ni—Co—Mn—Al—Cu六元系(ML为富镧混合稀土金属)在α+β相区恒温吸氢动力学.研究结果表明,五元系贮氢合金吸氢初期受化学反应控速,后期受氢在合金氢化物中的扩散控速,动力学规律不受氢初压的影响.由于Cu的加入,六元系贮氢合金吸氢机制初期转变为β相形核长大控速,后期仍为氢在合金氢化物中的扩散控速.  相似文献   

10.
掺杂Fe对贮氢合金Ml(Ni—Co—Mn—Ti)5电化学性能的影响   总被引:8,自引:3,他引:5  
针对混合稀土金属中含有不定量的Fe杂质及贮氢电极合金在熔炼过程中容易混入Fe杂质的特点,采用在Ml(Ni-Co-Mn-Ti)5合金中入为地添加不同量Fe的方法,系统地研究了Fe掺 对贮氢电极合金Ml(Ni-Co-Mn-Ti)5电化学性能的影响。  相似文献   

11.
通过PCT测试及XRD分析研究了添加10%(质量分数,下同)Ni并球磨对Mg17Al12合金吸放氢性能及结构的影响.10%Ni的添加改善了Mg17Al12合金的吸放氢性能.合金在423 K下即可快速吸氢,在523 K下表现最优的吸放氢性能并具有优异的动力学性能,在15 min内吸氢量可以达到2.93%(质量分数,下同),饱和吸氢量达到4.20%.合金在523 K下放氢平台压达到0.3 MPa,放氢量为3.45%.合金氢化物的生成焓和生成熵分别为-68.37 kJ·mol-1H2、-121.42 J.(mol-1·K-1).在Mg17Al12合金添加10%Ni球磨1 h后,主相仍然为Mg17Al12相并有少量的Al-Ni金属间化合物相,吸氢饱和后合金的相组成为MgH2、Al以及Al-Ni金属间化合物,放氢后主相为Mg17Al12相,表明Mg17Al12相在吸放氢过程中的相变是可逆的.  相似文献   

12.
通过XRD、SEM/EDS及PCT测试研究了由FeV80合金制备的V28Ti32Cr28Mn6Fe6合金的组织结构及吸放氢特性。该合金由bcc相和C14Laves第二相构成。由于合金中氧含量(0.83%,质量分数)较高,因而吸放氢容量较低,动力学性能较差。通过添加一定量的稀土元素La(1%~10%,质量分数),可显著降低合金中的氧含量,从而提高其动力学性能和吸放氢容量。当La的添加量达到4.0%时,合金具有最佳的吸放氢性能,吸氢量达到3.62%,放氢量达到2.13%;合金氢化物的生成焓为(-40.0±1)kJ/mol·H2。  相似文献   

13.
应用特制双层水恒温反应器和动力学机理函数计算机拟合的方法,在303—343K温度范围内研究了ML—Ni—Co—Mn—Al五元系和ML—Ni—Co—Mn—Al—Cu六元系(ML为富镧混合稀土金属)在α+β相区恒温吸氢动力学.研究结果表明,五元系贮氢合金吸氢初期受化学反应控速,后期受氢在合金氢化物中的扩散控速,动力学规律不受氢初压的影响.由于Cu的加入,六元系贮氢合金吸氢机制初期转变为β相形核长大控速,后期仍为氢在合金氢化物中的扩散控速.  相似文献   

14.
纯镁能吸收多达 7 6 % (质量 )的氢 ,但其吸放氢的速度很慢而且放氢温度太高 (约 6 0 0K ) ,因而无法实用。因此 ,降低放氢温度一直是镁基贮氢合金的开发重点。为了降低镁氢化合物的稳定性 ,与非氢化物形成金属合金化是有效的 ,但从相图来看除Ni、Pd、Pt以外几乎再无金属能与Mg形成金属间化合物。因此Mg Ni系贮氢合金的开发成了新型镁基贮氢合金的开发重点。经过多年来的研究筛选 ,发现吸氢量很大的轻金属Mg和Ca同非氢化物形成元素Ni所构成的 (Ca ,Mg)Ni2 合金 ,认为这一合金的发现为进一步开发性能良好的镁基贮氢…  相似文献   

15.
研究贮氢合金LaNi4.7Al0.3、MlNi4.5Al0.5在纯氢(99.999%)及氢中含CO气体杂质条件下的p-c-t特性及循环性能。结果表明,合金经C毒化后,平台压升高,平台倾斜加剧,平台宽度缩小,饱和吸氢量减小,毒化后两篑定氢合金的循环性能衰退,而且随着循环次数的增加吸氢量减少,增加CO的浓度,吸氢量减少更加明显。合金贮氢性能下降的原因可能是由于表面生成了氧化物及新相,阻止了氢的吸附与扩  相似文献   

16.
贮氢合金的发展 氢的特点在于它能够与大多数元素化合而形成氢化物。它与元素化合时,可与锂或钠之类金属直接反应生成“离子型氢化物(盐型氢化物)”,与氧、氮、氯之类气体反应大多生成在常温下呈气态的“共价键型氢化物”,还能够进入铁或镍之类过渡金属元素结晶间隙之中形成“金属键型氢化物”。氢气与某些金属表面接触时氢分子即被吸附于金属表面,氢分子离解而成原子状态氢,随即进入金属原子之间的空隙并迅速进行内部扩散而占据晶格间的位置。氢在金属晶格中主要呈原子态或离子态以金属键或离子键形成金属氢化物。容易生成氢化物的金属(A)与难以生成氢化物的金属(B)结合在一起。  相似文献   

17.
传统的贮氢合金按其成分大致可分为AB5、AB2 、AB和A2 B型化合物四大类。AB5型化合物当前最通用也是最典型的合金便是LaNi5;AB2 型近年来研究最活跃的合金是立方晶Cl5Laves相 (MgCu2 型 )和六方晶Cl4Laves相 (MgZn2 型 ) ,A可以是稀土元素、Ti或Zr等 ,而B可以是Mn、Cr、V、Ni和Fe等 ,通过改变A与B的比例可控制吸氢平台 ;AB型是等比化合物有ZrNi、TiFe、TiCo、ZrCo等贮氢合金 ,目前尚未达到实用化要求 ;A2 B型 ,以Mg2 Ni合金为代表 ,其优点在于轻而且吸氢量…  相似文献   

18.
Ml(Ni4.55-xCOxMn0.4Ti0.05)合金的相结构与电化学性能   总被引:10,自引:0,他引:10  
对Ml(Ni4.55-xCoxMn0.4Ti0.05)合金(x=0.0~0.8)的相结构、气态吸放氢特性及电化学性能进行一系统的研究。结果表明,在x≤0.3的组成范围内。合金保持单一的LaNi5相:当x〉0.3时,合金中析出多种第二相,且第二相总量随Co含量的增加而增多。随合金Co含量的增加,晶胞体积增大,吸放氢平台下降,滞后减小,但;定氢容量降低,在X≤0.3的组成范围内,合 Co含量增大提高了  相似文献   

19.
Fe的添加,提高了金属钒的活化性能和放氢平台压力,降低吸放氢容量.Fe含量<1%(原子分数,下同),对二氢化物并无明显影响,Fe含量>1%,二氢化物平台压明显升高,容量明显下降,氢化物的生成焓明显降低;Fe的添加对一氢化物并无明显的影响.随着Fe含量的增加,合金的晶格常数和晶胞体积呈线性趋势降低.  相似文献   

20.
贮氢合金一般是由可单独与氢起反应生成氢化物的金属与不能与氢起反应生成氢化物的金属所组成的金属间化合物。当前几个最典型的贮氢合金有 :( 1)稀土系贮氢合金 ,最早 ( 1970年 )发现的便是LaNi5合金 ,可在室温下进行反复吸放氢气。当前作为镍 -氢蓄电池电极用的合金是以LaNi5为基础采用稀土混合物 (Mm)取代La并利用Mn、Al、Co等元素取代一部分Ni的合金 ,MmNi5即AB5型合金是已经商品化的第一代贮氢合金。 ( 2 )钛铁系贮氢合金 ,于 1974年发现具有氯化铯构造的TiFe合金在室温下能够吸放大量氢气 ,这类合金价…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号