首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A 2.45 GHz microwave-sintered Si3N4–Y2O3–MgO system containing various amounts of ZrO2 secondary additives have been studied with respect to phase transformation and densification behavior. The temperature dependent dielectric properties were measured from 25°C to 1400°C using a conventional cavity perturbation technique. Phase transformation behavior was studied using X-ray diffractometry. Microwave sintered results were compared with those of conventional sintered results. It has been found that α to β phase transformation was completed at a lower temperature in microwave-sintered samples than those of the conventionally sintered samples. Density of the microwave-sintered samples increased up to 2.5 wt% of ZrO2 addition and thereafter it showed a tendency to decrease or remain constant. The decrease in density is attributed to the pore generation caused by decomposition due to the localized over heating.  相似文献   

2.
Densification and Sintering Kinetics in Sintered Silicon Nitride   总被引:1,自引:0,他引:1  
The sintering sequence of Y2O3-Al2O3-doped Si3N4 was investigated with respect to the relationship between densification, α→β transformation, and microstructural development. Quenching studies were performed to reveal these interactions during a complete sintering cycle. Isothermal studies were conducted to examine the sintering kinetics and compared to Kingery's liquid-phase sintering model. The bulk density increased to ≥90% of theoretical density with only minor transformation taking place. Major transformation occurred in a late sintering stage and was accompanied by the development of elongated grains. The kinetic order of the densification process, taking into account an appropriate correction, was larger than any of the rate exponents predicted by the Kingery model, indicating that other single or mixed mechanisms were active.  相似文献   

3.
Dense Sic ceramics were obtained by pressureless sintering of β-Sic and α-Sic powders as starting materials using Al2O3-Y2O3 additives. The resulting microstructure depended highly on the polytypes of the starting SiC powders. The microstructure of SiC obtained from α-SiC powder was composed of equiaxed grains, whereas SiC obtained from α-SiC powder was composed of a platelike grain structure resulting from the grain growth associated with the β→α phase transformation of SiC during sintering. The fracture toughness for the sintered SiC using α-SiC powder increased slightly from 4.4 to 5.7 MPa.m1/2 with holding time, that is, increased grain size. In the case of the sintered SiC using β-SiC powder, fracture toughness increased significantly from 4.5 to 8.3 MPa.m1/2 with holding time. This improved fracture toughness was attributed to crack bridging and crack deflection by the platelike grains.  相似文献   

4.
A two-step sintering process is described in which the first step suppresses densification while allowing the α-to-β phase transformation to proceed, and the second step, at higher temperatures, promotes densification and grain growth. This process allows one to obtain a bimodal microstructure in Si3N4 without using β-Si3N4 seed crystals. A carbothermal reduction process was used in the first step to modify the densification and transformation rates of the compacts consisting of Si3N4, Y2O3, Al2O3, and a carbon mixture. The carbothermal reduction process reduces the oxygen:nitrogen ratio of the Y-Si-Al-O-N glass that forms, which leads to the precipitation of crystalline oxynitride phases, in particular, the apatite phase. Precipitation of the apatite phase reduces the amount of liquid phase and retards the densification process up to 1750°C; however, the α-to-β phase transformation is not hindered. This results in the distribution of large β-nuclei in a porous fine-grained β-Si3N4 matrix. Above 1750°C, liquid formed by the melting of apatite resulted in a rapid increase in densification rates, and the larger β-nuclei also grew rapidly, which promoted the development of a bimodal microstructure.  相似文献   

5.
The modification of the densification behavior and the grain-growth characteristics of the microwave-sintered ZnO materials, caused by the incorporation of V2O5 additives, have been systematically studied. Generally, the addition of V2O5 markedly enhances the densification rate, such that a density as high as 97.9% of the theoretical density and a grain size as large as 10 µm can be attained for a sintering temperature as low as 800°C and a soaking time as short as 10 min. Increasing the sintering temperature or soaking time does not significantly change the sintered density of the ZnO-V2O5 materials but it does monotonously increase their grain size. Varying the proportion of V2O5 in the range of 0.2-1.0 mol% does not pronouncedly modify such behavior. The leakage current density ( J L) of these high-density and uniform-granular-structure samples is still large, which is amended by the incorporation of 0.3 mol% of Mn3O4 in the ZnO materials, in addition to 0.5 mol% of the V2O5 additives. Samples that are obtained using such a method possess good nonohmic characteristics (α= 23.5) and a low leakage current density ( J L= 2.4 10-6 A/cm2).  相似文献   

6.
By using α-Si3N4 and β-Si3N4 starting powders with similar particle size and distribution, the effect of α-β (β') phase transition on densification and microstructure is investigated during the liquid-phase sintering of 82Si3N4·9Al2O3·9Y2O3 (wt%) and 80Si3N4·13Al2O3·5AIN·5AIN·2Y2O3. When α-Si3N4 powder is used, the grains become elongated, apparently hindering the densification process. Hence, the phase transition does not enhance the densification.  相似文献   

7.
Silicon nitride (Si3N4) ceramics, prepared with Y2O3 and Al2O3 sintering additives, have been densified in air at temperatures of up to 1750°C using a conventional MoSi2 element furnace. At the highest sintering temperatures, densities in excess of 98% of theoretical have been achieved for materials prepared with a combined sintering addition of 12 wt% Y2O3 and 3 wt% Al2O3. Densification is accompanied by a small weight gain (typically <1–2 wt%), because of limited passive oxidation of the sample. Complete α- to β-Si3N4 transformation can be achieved at temperatures above 1650°C, although a low volume fraction of Si2N2O is also observed to form below 1750°C. Partial crystallization of the residual grain-boundary glassy phase was also apparent, with β-Y2Si2O7 being noted in the majority of samples. The microstructures of the sintered materials exhibited typical β-Si3N4 elongated grain morphologies, indicating potential for low-cost processing of in situ toughened Si3N4-based ceramics.  相似文献   

8.
The gelation, phase transformation, and densification of a colloidal monolithic gel made from γ-Al2O3 fume powder are investigated. Among the six gelation agents that we use, formamide and urea are quick in causing gelation and easy to burn off. The densification rate of this gel decreases rapidly after the γ-to-α phase transformation. TiO2 is an effective sintering aid to overcome this bottleneck of densification because (1) it enhances the phase transformation rate so that the sintering of α-alumina occurs at a lower temperature, and (2) it promotes sintering rates at the initial and intermediate stages after phase transformation. On the other hand, MgO has an inappreciable effect on gel sintering. The effect of MgO at the final sintering stage is obstructed by this densification barrier after transformation. The titania-doped gel monoliths can be sintered to high density and fine microstructure at 1400°C.  相似文献   

9.
Tantalum (V) oxide (Ta2O5) has potential applications as part of an environmental barrier coating system for Si3N4-based turbine components. However, at elevated temperatures, Ta2O5 undergoes a phase transformation from the orthorhombic (β) phase to the tetragonal phase (α), which is undesirable because of the associated volume change. The purpose of the present work was to study the effect of alumina additions (0–5 wt%) on the β to α transformation temperature, and associated modifications to the Ta2O5 microstructure. Sintered microstructures were characterized using SEM (scanning electron microscopy), and XRD (X-ray diffraction) was used to identify the phases present at room temperature. It was found that for undoped Ta2O5, transformation of the low-temperature β-phase begins at ∼1300°C, and leads to extensive microcracking of the sintered sample. For samples containing alumina, an increase in the transformation temperature was observed. The solubility limit of alumina in Ta2O5 was between 1 and 3 wt%; for samples in which this was exceeded, the AlTaO4 second and phase particles were seen to be highly effective at inhibiting grain growth.  相似文献   

10.
Pulsed Electric Current Sintering of Silicon Nitride   总被引:1,自引:0,他引:1  
Pulsed electric current sintering (PECS) has been used to densify α-Si3N4 powder doped with oxide additives of Y2O3 and Al2O3. A full density (>99%) was achieved with virtually no transformation to β-phase, resulting in a microstructure with fine equiaxed grains. With further holding at the sintering temperature, the α-to-β phase transformation took place, concurrent with an exaggerated grain growth of a limited number of elongated β-grains in a fine-grained matrix, leading to a distinct bimodal grain size distribution. The average grain size was found to obey a cubic growth law, indicating that the growth is diffusion-controlled. In contrast, the densification by hot pressing was accompanied by a significant degree of the phase transformation, and the subsequent grain growth gave a broad normal size distribution. The apparent activation energy for the phase transformation was as high as 1000 kJ/mol for PECS, almost twice the value for hot pressing (∼500 kJ/mol), thereby causing the retention of α-phase during the densification by PECS.  相似文献   

11.
Ultrafine (<0.1 μm) high-purity θ-Al2O3 powder containing 3–17.5 mol%α-Al2O3 seeds was used to investigate the kinetics and microstructural evolution of the θ-Al2O3 to α-Al2O3 transformation. The transformation and densification of the powder that occurred in sequence from 960° to 1100°C were characterized by quantitative X-ray diffractometry, dilatometry, mercury intrusion porosimetry, and transmission and scanning electron microscopy. The relative bulk density and the fraction of α phase increased with annealing temperature and holding time, but the crystal size of the α phase remained ∼50 nm in all cases at the transformation stage (≤1020°C). The activation energy and the time exponent of the θ to α transformation were 650 ± 50 kJ/mol and 1.5, respectively. The results implied the transformation occurred at the interface via structure rearrangement caused by the diffusion of oxygen ions in the Al2O3 lattice. A completely transformed α matrix of uniform porosity was the result of appropriate annealing processes (1020°C for 10 h) that considerably enhanced densification and reduced grain growth in the sintering stage. The Al2O3 sample sintered at 1490°C for 1 h had a density of 99.4% of the theoretical density and average grain size of 1.67 μm.  相似文献   

12.
β-SiC powder containing 6 wt% A12O3 and 4 wt% Y2O3 as sintering additives was pressureless sintered at 2000°C for 1 h (AYE-SiC) and 3 h (AYP-SiC). AYE-SiC consisted of an equiaxed grain structure and AYP-SiC exhibited a micro-structure with platelike grains as a result of grain growth related to β→α phase transformation during sintering, R -curve behavior and flaw tolerance for these silicon carbides were evaluated by the indentation-strength technique. For comparison, the R -curve behavior of conventional sintered, boron- and carbon-doped SiC (SS-SiC) was evaluated. AYE-SiC and AYP-SiC exhibited rising R -curve behavior with toughening exponents of m = 0.042 and m = 0.135, respectively. AYP-SiC exhibited better flaw tolerance and more sharply rising R -curve behavior than AYE-SiC. The more sharply rising R -curve behavior and the better flaw tolerance of AYP-SiC were attributed mainly to grain bridging of crack faces by platelike grains. Because of the high degree of transgranular fracture, SS-SiC exhibited a flat R -curve despite a microstructural feature with platelike grains.  相似文献   

13.
Seeding of the Reaction-Bonded Aluminum Oxide Process   总被引:1,自引:0,他引:1  
The effect of the initial α-Al2O3 particle size in the reaction-bonded aluminum oxide (RBAO) process on the phase transformation of aluminum-derived γ-Al2O3 to α-Al2O3, and subsequently densification, was investigated. It has been demonstrated that if the initial α-Al2O3 particles are fine (∼0.2 μm, i.e., 2.9 × 1014γ-Al2O3 particles/cm3), then they seed the phase transformation. The fine α-Al2O3 decreases the transformation temperature to ∼962°C and results in a finer microstructure. The smaller particle size of the seeded RBAO decreases the sintering temperature to as low as ∼1135°C. The results confirm that seeding can be utilized to improve phase transformations and densification and subsequently to tailor final microstructures in RBAO-derived ceramics.  相似文献   

14.
The dehydration, transformation, and densification of boehmite (γ-AlOOH) are enhanced by addition of γ-Al2O3 seed particles. α-Al2O3 microstructures with uniform 1- to 2-μm grain size and sintered densities 98% of theoretical are achieved at 1300°C Thermal analysis shows that γ-Al2O3 seed particles transform to α-Al2O3 before the matrix, thus controllably nucleating the transformation of θ-AI2O3 to α-Al2O3.  相似文献   

15.
A double–inverse microemulsion (IME) process is used for synthesizing nano-sized Ba2Ti9O20 powders. The crystallization of powders thus obtained and the microwave dielectric properties of the sintered materials were examined. The IME-derived powders are of nano-size (∼21.5 nm) and possess high activity. The BaTi5O11, intermediate phase resulted when the IME-derived powders were calcined at 800°C (4 h) in air. However, high-density Ba2Ti9O20 materials with a pure triclinic phase (Hollandite like) can still be obtained by sintering such a BaTi5O11 dominated powders at 1250°C/4 h. The phase transformation kinetics for the IME-derived powders were markedly enhanced when air was replaced by O2 during the calcinations and sintering processes. Both the calcination and densification temperatures were reduced by around 50°C compared with the process undertaken in air. The microwave dielectric properties of sintered materials increase with the density of the samples, resulting in a large dielectric constant ( K ≅39) and high-quality factor ( Q × f ≅28 000 GHz) for samples possessing a density higher than 95% theoretical density, regardless of the sintering atmosphere. Overfiring dissociates Ba2Ti9O20 materials and results in a poor-quality factor.  相似文献   

16.
The effect of starting SiC powder (β-SiC or α-SiC), with simultaneous additions of Al2O3 and Y2O3, on the microstructural evolution of liquid-phase-sintered (LPS) SiC has been studied. When using α-SiC starting powder, the resulting microstructures contain hexagonal platelike α-SiC grains with an average aspect ratio of 1.4. This anisotropic coarsening is consistent with interface energy anisotropy in α-SiC. When using β-SiC starting powder, the β→α phase transformation induces additional anisotropy in the coarsening of platelike SiC grains. A strong correlation between the extent of β→α phase transformation, as determined using quantitative XRD analysis, and the average grain aspect ratio is observed, with the maximum average aspect ratio reaching 3.8. Based on these observations and additional SEM and TEM characterizations of the microstructures, a model for the growth of these high-aspect-ratio SiC grains is proposed.  相似文献   

17.
Effects of N2 sintering atmosphere and the starting SiC powder on the microstructural evolution of liquid-phase-sintered (LPS) SiC were studied. It was found that, for the β-SiC starting powder case, there was complete suppression of the β→α phase transformation, which otherwise goes to completion in Ar atmosphere. It was also found that the microstructures were equiaxed and that the coarsening was severely retarded, which was in contrast with the Ar-atmosphere case. Chemical analyses of the specimens sintered in N2 atmosphere revealed the presence of significant amounts of nitrogen, which was believed to reside mostly in the intergranular phase. It was argued that the presence of nitrogen in the LPS SiC helped stabilize the β-SiC phase, thereby preventing the β→α phase transformation and the attendant formation of elongated grains. To investigate the coarsening retardation, internal friction measurements were performed on LPS SiC specimens sintered in either Ar or N2 atmosphere. For specimens sintered in N2 atmosphere, a remarkable shift of the grain-boundary sliding relaxation peak toward higher temperatures and very high activation energy values were observed, possibly due to the incorporation of nitrogen into the structure of the intergranular liquid phase. The highly refractory and viscous nature of the intergranular phase was deemed responsible for retarding the solution–reprecipitation coarsening in these materials. Parallel experiments with specimens sintered using α-SiC starting powders further reinforce these arguments. Thus, processing of LPS SiC in N2 atmosphere open the possibility of tailoring their microstructures for room-temperature mechanical properties and for making high-temperature materials that are highly resistant to coarsening and creep.  相似文献   

18.
Bi2O3 was added to a nominal composition of Zn1.8SiO3.8 (ZS) ceramics to decrease their sintering temperature. When the Bi2O3 content was <8.0 mol%, a porous microstructure with Bi4(SiO4)3 and SiO2 second phases was developed in the specimen sintered at 885°C. However, when the Bi2O3 content exceeded 8.0 mol%, a liquid phase, which formed during sintering at temperatures below 900°C, assisted the densification of the ZS ceramics. Good microwave dielectric properties of Q × f =12,600 GHz, ɛr=7.6, and τf=−22 ppm/°C were obtained from the specimen with 8.0 mol% Bi2O3 sintered at 885°C for 2 h.  相似文献   

19.
The effect of glass addition on the properties of BaO–TiO2-WO3 microwave dielectric material N-35, which has Q = 5900 and K = 35 at 7.2 GHz for samples sintered at 1360°C, was investigated. Several glasses including B2O3, SiO2, 5ZnO–2B2O3, and nine other commercial glasses were selected for this study. Among these glasses, one with a 5 wt% addition of B2O3 to N-35, when sintered at 1200°C, had the best dielectric properties: Q = 8300 and K = 34 at 8.5 GHz. Both Q and K increased with firing temperature as well as with density. The Q of N-35, when sintered with a ZnO–B2O3 glass system, showed a sudden drop in the sintering temperature to about 1000°C. The results of XRD, thermal analysis, and scanning electron microscopy indicated that the chemical reaction between the dielectric ceramics and glass had a greater effect on Q than on the density. The effects of the glass content and the mixing process on the densification and microwave dielectric properties are also presented. Ball milling improved the densification and dielectric properties of the N-35 sintered with ZnO–B2O3.  相似文献   

20.
In the system ZrO2–Al2O3, a new method for preparing ZrO2 solid solutions from ZrCl4 and AlCl3 using hydrazine monohydrate is investigated. c -ZrO2 solid solutions containing up to ∼40 mol% Al2O3 crystallize at low temperatures from amorphous materials. The formation mechanism is discussed from IR spectral data. The values of the lattice parameter α increase linearly from 0.5072 to 0.5105 nm with increasing Al2O3 content. At higher temperatures, transformation of the solid solutions proceeds as follows: c ( SS ) → t ( ss ) → t ( ss ) +α-Al2O3→ m +α-Al2O3. m -ZrO2–α-Al2O3 composite ceramics are fabricated by hot isostatic pressing for 2 h at 1250°C and 196 MPa. Microstructures and mechanical properties are examined, in connection with increasing Al2O3 content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号