首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Photocatalyst degradation is an effective and environment-friendly method for dye pollution. Magnetically recyclable Fe2O3–MFe2O4 composites were successfully synthesized from laterite leach liquors by a simple coprecipitation-calcination method. The as-prepared samples were characterized by x-ray diffraction (XRD), physical property measurement system (PPMS), and UV-Vis. The results show that the Fe2O3–MFe2O4 composites can be easily recycled from the solution due to the magnetic properties. Photodegradation experiments results indicated that the degradation rate of rhodamine B (RhB) solution were found to be about 90.0% for the composites, and the degradation rate were still more than 80.0% after being reused for five times. The heterostructure between the Fe2O3 and MFe2O4 effectively enhanced the separation of electron hole pairs, facilitating the photocatalysis process. This paper provided a facile pathway for comprehensive utilization of laterite leach liquor to synthesize magnetically recyclable Fe2O3–MFe2O4 with enhanced photocatalyst performance.  相似文献   

2.
In this research work, we prepared γ-Fe2O3 nanoparticles by thermal-decomposition of Fe3O4. The Fe3O4 nanoparticles were synthesized via co-precipitation method at room temperature. This simple, soft and cheap method is suitable for preparation of iron oxide nanoparticles (γ-Fe2O3; Fe3O4). The samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), vibrating sample magnetometer and differential scanning calorimeter (DSC). The XRD and FT-IR results indicated the formation of γ-Fe2O3 and Fe3O4 nanoparticles. The TEM images showed that the γ-Fe2O3 and Fe3O4 were spherical, and their size was 18 and 22 nm respectively. Magnetic properties have been measured by VSM at room temperature. Hysteresis loops showed that the γ-Fe2O3 and Fe3O4 nanoparticles were super-paramagnetic.  相似文献   

3.
A laboratory-scale study on the abatement of bisphenol A (BPA) was performed by combining O3 with H2O2 and UV (O3/H2O2/UV), an ozone-based advanced oxidation processes technique (AOP). This work aimed to (1) evaluate the removal of BPA with O3/H2O2/UV, and to compare the degradation efficiency with other ozone-based AOPs (such as O3 alone, O3/H2O2, and O3/UV), (2) structurally optimize BPA abatement by using a central composite design (CCD) for experimental design purposes and/or a response surface methodology to find the optimum, and (3) identify the degradation pathways, and main intermediate products, formed during BPA abatement with O3/H2O2/UV. The degradation pathways of BPA degradation were revealed by O3/H2O2/UV on the basis of evidences of intermediate generation. The effect of initial pH, ozone, and H2O2 dose during BPA abatement was studied in detail. By increasing each of these three parameters, an enhancement of the BPA degradation efficiency is mostly observed. BPA can be degraded completely when a sufficiently high ozone dose is applied. However, excess H2O2, as a scavenger of HO·, has a negative effect on BPA abatement, resulting in a decrease in the BPA’s degradation efficiency. For example, the removal decreased from 64 to 58% by enhancing the H2O2 initial dose from 0.5 to 0.75 mmol/L (at an initial pH and ozone dose of, respectively, 7 and 0.1 mg/L). The results confirmed that combining ozone with H2O2 and UV was a more efficient method than the other three ozone-based AOPs on the removal of BPA. Therefore, this method could be further applied for the treatment of real wastewaters containing BPA and other micropollutants.  相似文献   

4.
A major issue with Li-O2 batteries is their slow oxygen reduction and evolution kinetics, necessitating catalysts with high catalytic activity to improve reaction kinetics and cycle stability. Herein, a nano-heterostructured catalyst composed of Co3O4 and Fe2O3 (Co3O4/Fe2O3) with a porous rod morphology is achieved through an interfacial engineering strategy by constructing Fe2O3 on the Co3O4 surface, which can function as a high-performance cathode in order to efficiently encourage the oxygen reduction and evolution while also reduce the battery polarization during charging and discharging. The density functional theory (DFT) calculations show the differences in charge density at the interface of nano-heterostructures, demonstrating the occurrence of an electron transfer process in the interface region of Co3O4 and Fe2O3, implying a strong electronic coupling transfer, and in turn changing the electronic structure of the Co3O4. This significantly reduces the adsorption energy of LiO2 intermediates, thereby effectively lowering the overpotential. The resultant Li-O2 battery has larger discharge specific capacity, lower overpotential for the efficient oxygen evolution/reduction, as well as good cycling stability of 280 cycles. This work demonstrates an effective method to fabricate the nano-heterostrucutred materials with enhanced catalytic efficiency for advanced energy applications.  相似文献   

5.
A layer-by-layer deposition technique of Ga2O3 and WO3 by vacuum evaporation method on glass and silicon substrates and subsequent annealing in oxygen atmosphere to form W-doped Ga2O3 (or Ga2O3:W) films was attempted here. The W doping level was measured by the energy dispersive X-ray fluorescence radiographic analysis. The crystalline structure of Ga2O3:W films was determined by the X-ray diffraction method. Experimental data indicate that W6+ ions doped in host Ga2O3 forming solid solutions (SS), in which the molar ratio (r) of W to Ga is 9.6, 13.4, 18.2, 22.7 and 30.4%. All the prepared SS have the known β-Ga2O3 crystalline structure. This doping controls the optical and electrical properties of the host Ga2O3. The optical properties of the prepared Ga2O3:W films were studied by UV–VIS–NIR absorption spectroscopy method from which the bandgap was determined. In general, it was found that the prepared Ga2O3:W films are wide-bandgap semiconductors with bandgap 4.69–4.47 eV and have dielectric properties. The optical sensitivity of the capacitance, dissipation factor and ac-conductance of the Ga2O3:W films grown on Si was studied as a function of W-doping level. It was observed that the prepared Ga2O3:W film of r = 22.7% has the highest photosensitivity amongst the other samples.  相似文献   

6.
A facile sol–gel method is developed for the fabrication of α-Fe2O3 with quasi-honeycomb like structures inherited from Papilio paris butterfly wings. The exquisite hierarchical architecture is faithfully maintained in α-Fe2O3 from the skeleton of butterfly wings at the levels from macro to nano-scales. When used as a chemical sensor, the obtained α-Fe2O3 replica (P-α-Fe2O3) showed a much higher performance than that of the compared α-Fe2O3 nanoparticles synthesized under the same condition without biotemplate (S-α-Fe2O3). The P-α-Fe2O3-based sensor has a sensitivity of 19.2–50 ppm H2S, which is four times more than that of S-α-Fe2O3, accompanied by a rapid response/recovery time within 1/10 s even at a relatively low working temperature of 180 °C. Compare to the S-α-Fe2O3, surface area of which cannot be detectable, the high sensing feature of P-α-Fe2O3 would be attributed to the relatively high-specific surface area 24.12 m2/g thus fabricated together with the unique 3D-network structures, which provide channel for the diffusion of H2S. This strategy is expected to be used in fabrication of other kinds of metal oxide with unique structures for the potential application in gas sensor.  相似文献   

7.
The connection of strength of magnetic interactions and type ordering the magnetic moments with crystal chemical characteristics in low-dimensional magnets is investigated. The new method to calculate the sign and relative strength of magnetic interactions in low-dimensional systems on the basis of the structural data is proposed. This method allows to estimate magnetic interactions not only inside low-dimensional fragments but also between them, and also to predict the possibility of the occurrence of magnetic phase transitions and anomalies of the magnetic interactions. Moreover, it can be used for search of low-dimensional magnets among the compounds whose crystal structures are known. The possibilities of the method are illustrated in an example of research of magnetic interactions in familiar low-dimensional magnets SrCu2(BO3)2, CaCuGe2O6, CaV4O9, Cu2Te2O5Cl2, Cu2Te2O5Br2, BaCu2Si2O7, BaCu2Ge2O7, BaCuSi2O6, LiCu2O2, and NaCu2O2.  相似文献   

8.
Zhan-Guo Liu  Yu Zhou 《Materials Letters》2008,62(20):3524-3526
This paper deals with the effect of gadolinia on the phase structure and thermal conductivity of ZrO2-4.5 mol%Y2O3 (YSZ) ceramics for thermal barrier coatings. The YSZ-Gd2O3 ceramics were synthesized by solid state reaction at 1500 °C for 2 h in air. The relative density, structure of different YSZ-Gd2O3 ceramics and thermal diffusivity in a temperature range of room temperature to 1200 °C were investigated by the Archimedes method, X-ray diffraction and laser-flash method. The ZrO2-4.5 mol%Y2O3 (YSZ) ceramics consist of tetragonal, cubic and a small amount of monoclinic phase, and the YSZ-1.5 mol%Gd2O3 ceramics consist of both tetragonal and cubic phases. However, the YSZ-3.0 mol%Gd2O3, YSZ-4.5 mol%Gd2O3 and YSZ-6.0 mol%Gd2O3 ceramics only exhibit a cubic structure. The thermal conductivity of YSZ-Gd2O3 ceramics decreases with the increase of gadolinia content under identical temperature conditions. The thermal conductivities of the YSZ and YSZ-1.5 mol%Gd2O3 ceramics first decrease gradually with the increase of temperature below 800 °C and then increase slightly above 800 °C. The thermal conductivities of the YSZ-3.0 mol%Gd2O3, YSZ-4.5 mol%Gd2O3 and YSZ-6.0 mol%Gd2O3 ceramics are almost constants from room temperature to 1200 °C.  相似文献   

9.
This article presents the effect of hematite phase iron oxide (α-Fe2O3) on the electrocatalytic activity of graphene oxide (GO) for electrochemical detection of hydroquinone in aqueous solution. The different weight percentage (wt%) (1, 2 and 3%) of α-Fe2O3 added GO nanocomposites were synthesized by wet-impregnation method. The cyclic voltammetry studies using 2% α-Fe2O3-GO modified glassy carbon electrodes was found to exhibit an excellent electrocatalytic activity than α-Fe2O3 and GO electrodes that may be due to the synergistic effect of α-Fe2O3nanoparicles and GO sheet. In addition, the modified electrode exhibited a good reproducibility as well as long-term stability. Hence, the 2% α-Fe2O3-GO can be a promising catalytic material for electrochemical sensor applications.  相似文献   

10.
Al2O3/TiAl composites were successfully fabricated from powder mixtures of Ti, Al, TiO2 and Cr2O3 by a hot-press-assisted exothermic dispersion method. The effect of the Cr2O3 addition on the microstructures and mechanical properties of Al2O3/TiAl composites was characterized, and the results showed that the Rockwell hardness, flexural strength and fracture toughness of the composites increased as the Cr2O3 content increased. When the Cr2O3 content was 2.5 wt%, the flexural strength and the fracture toughness attained peak values of 925 MPa and 8.55 MPa m1/2, respectively. This improvement of mechanical properties was due to the more homogeneous and finer microstructure developed from the addition of Cr2O3 and an increase in the ratio of α2-Ti3Al to γ-TiAl matrix phases.  相似文献   

11.
Fe2O3–CeZrO2 is a suitable oxygen storage material for the production of pure hydrogen by a cyclic water gas shift (CWGS) process which is based on the reduction of the material by syngas followed by the re-oxidation of the reduced material with water vapor. For identification of the reduction kinetics H2-temperature programmed reduction experiments were performed. Several kinetic models were tested and the activation energy of reduction was calculated by the Kissinger method, by model-based curve fitting and by the isoconversional analysis method. The reduction of Fe2O3–CeZrO2was found to occur in a four-step process including the reduction of Fe2O3,Fe3O4, and CeZrO2. The overall process can be interpreted as phase-boundary controlled reduction of Fe2O3 to Fe3O4, and two-dimensional nucleation controlled reduction of Fe3O4 to Fe and of CeO2 to Ce2O3. At higher oxygen conversion, the reduction of Fe3O4 and CeO2 are significantly influenced by volume-diffusion in the solid bulk.  相似文献   

12.
The aim of the article was to evaluate the microstructural parameters of Cu–Al2O3 dispersion strengthened materials with different volume fraction of Al2O3 phase. For analyses of dispersoids Al2O3, the extraction carbon replica was used. The distribution of Al2O3 particles in the matrix was estimated by three methods (quadrant count method, polygonal method, and by interparticle distances), these methods showed that particle distribution in material with 1 vol.% of Al2O3 is very close to the Poisson point process (PPP), which is a model of randomly distributed points. Particle distributions in materials with 8 and 10 vol.% of Al2O3 achieve features of regularity proved mainly by the spherical contact distance.  相似文献   

13.
This study focused on the preparation and tribological properties of polyurethane/α-aluminum oxide (PU/α-Al2O3) hybrid films. PU/α-Al2O3 hybrid films containing various nanoscaled α-Al2O3 contents were prepared by an effectively mechanical stirring method. The tribological properties of PU/α-Al2O3 hybrid films were investigated by a TABER type abrasion tester after 2000 cycles. The results of abrasion tests showed the abrasion resistance of the PU/α-Al2O3 hybrid film was increased as the α-Al2O3 content was increased. The abrasion resistance of the PU/α-Al2O3 hybrid film was significantly improved up to 27.4% by adding 2 wt.% nanoscaled α-Al2O3 particles. The surface morphologies of PU/α-Al2O3 hybrid films, before and after abrasion tests, were examined by scanning electron microscopy (SEM). For the loading of 2 wt.% α-Al2O3 particles, the SEM image of the worn surface of the PU/α-Al2O3 hybrid film showed much smoother than those of pure PU film and other PU/α-Al2O3 hybrid films.  相似文献   

14.
The capability of the colloidal method to produce yttria (Y2O3) dispersed hydroxyapatite (HA) has been investigated as an alternative method to the conventional method of mechanical mixing and sintering for developing HA-based materials that could exhibit controllable and enhanced functional properties. A water based colloidal route to produce HA materials with highly dispersed Y2O3 has been applied, and the effect of 10 wt.% Y2O3 addition to HA investigated by thermal analysis, X-ray diffraction and Fourier transform infrared spectroscopy. These measurements evidence a remarkable effect of this Y2O3 addition on decomposition mechanisms of synthetic HA. Results show that incorporation of Y2O3 as dispersed second phase is beneficial because it hinders the decomposition mechanisms of HA into calcium phosphates. This retardation will allow the control of the sintering conditions for developing HA implants with improved properties. Besides, substitution of Ca2 + with Y3 + ions appears to promote the formation of OH? vacancies, which could improve the conductive properties of HA favorable to osseointegration.  相似文献   

15.
Smooth single-crystal α-Mn2O3 nanowires have been fabricated using a one-step solid-state reaction method. X-ray diffraction patterns show that the nanowires have pure phase of α-Mn2O3. Transmission electron microscopy was employed to investigate the size and morphology of the products. The α-Mn2O3 nanowires exhibit mean diameter of 50 nm and length of 10 μm. Selected-area electron diffraction pattern demonstrates the single-crystal structure of the α-Mn2O3 nanowires, which are in good agreement with the X-ray diffraction results. The processes of the reactions and the phase transitions were also studied by using a simultaneous thermal gravimetric/differential thermal analyzer. It is found that the concentration of the precursor MnCO3 is a crucial factor in the formation of the nanowires. This work provides the probability of the industrialization of fabricating smooth single-crystal α-Mn2O3 nanowires.  相似文献   

16.
17.
Y2O2S:Eu3+ nanobelts were successfully prepared via electrospinning method and sulfurization process using the as-prepared Y2O3:Eu3+ nanobelts and sulfur powders as sulfur source by a double-crucible method for the first time. X-ray diffraction analysis indicated that the Y2O2S:Eu3+ nanobelts were pure hexagonal in structure with space group P $ \bar{3} $ m1. Scanning electron microscope images showed that the width and thickness of the Y2O2S:Eu3+ nanobelts were ca. 6.7 μm and 125 nm, respectively. Under the excitation of 325-nm ultraviolet light, Y2O2S:Eu3+ nanobelts exhibited red emissions of predominant peaks at 628 and 618 nm, which are attributed to the 5D0 → 7F2 transition of the Eu3+ ions. It was found that the optimum doping concentration of Eu3+ ions in the Y2O2S: Eu3+ nanobelts was 3 %. Compared with bulk particle, Eu3+–O2?/S2? charge transfer bands (260 and 325 nm) of the Y2O2S:Eu3+ nanobelts showed a blue-shift significantly. The formation mechanism of the Y2O2S: Eu3+ nanobelts was also proposed. This new sulfurization technique is of great importance, not only to inherit the morphology of rare earth oxides but also to fabricate pure-phase rare earth oxysulfides at low temperature compared with conventional sulfurization method.  相似文献   

18.
Al2O3 matrix composites with unidirectionally oriented high-purity Al2O3 fibre with and without carbon coating, were fabricated by the filament-winding method, followed by hot-pressing at 1573–1773 K. The composite with non-coated Al2O3 fibre exhibited a bending strength (594 MPa) comparable to that of monolithic Al2O3 (589 MPa). While the composite with a carbon-coated fibre had lower strength (477 MPa), it showed improved fracture toughness (6.5 MPa m1/2) compared to the composite with an uncoated fibre (4.5 MPa m1/2) and monolithic Al2O3 (5.5 MPa m1/2). This toughness enhancement was explained based on the increased crack extension resistance caused by the fibre pull-out observed by SEM at the notch tip. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

19.
The phase diagram for the system ZrO2-Er2O3 was redetermined. At high temperatures, the system is dominated by wide regions of solid solution based on ZrO2 and Er2O3 separated by a two-phase field which appears to extend to the solidus. The range of existence of these solid solution fields was determined using the precision lattice parameter method. A low-temperature (<1800° C) long-range ordering occurred between 20 and 90 mol % Er2O3, and three ordered phases were found: the first compound was present at 40 mol % Er2O3 and corresponds to the ideal formula Er4Zr3O12 with rhombohedral symmetry (space group R¯3), is isostructural with UY6O12, and decomposes at about 1500° C into fluorite solid solution by an order-disorder process; the second ordered phase is formed at about 55 mol % Er2O3, its formula is close to Er5Zr2O11.5, and it decomposes at about 1650° C into cubic solid solutions of the fluorite and C-type; the third compound is formed at 75 mol % Er2O3, its formula is Er6ZrO11, it has a wide homogeneity range, and it decomposes above 1700° C into a cubic solid solution of the C-type. Liquidus determination indicated the existence of a peritectic at 62 mol % Er2O3.This work is based on the Ph.D. thesis of C. Pascual, Madrid University, 1980.  相似文献   

20.
Hematite suffers from poor charge transport and separation properties for solar water splitting. This paper describes the design and fabrication of a 3D Fe2O3/Fe2TiO5 heterojunction photoanode with improved charge separation, via a facile hydrothermal method followed by atomic layer deposition and air annealing. A highly crystallized Fe2TiO5 phase forms with a distinct interface with the underlying Fe2O3 core, where a 4 nm Fe2TiO5 overlayer leads to the best photoelectrochemical performance. The favorable band offset between Fe2O3 and Fe2TiO5 establishes a type‐II heterojunction at the Fe2O3/Fe2TiO5 interface, which drives electron–hole separation effectively. The Fe2O3/Fe2TiO5 composite electrode exhibits a dramatically improved photocurrent of 1.63 mA cm?2 at 1.23 V versus reversible hydrogen electrode (RHE) under simulated 1 sun illumination (100 mW cm?2), which is 3.5 times that of the bare Fe2O3 electrode. Decorating the Fe2O3/Fe2TiO5 heterojunction photoanode with earth‐abundant FeNiOx cocatalyst further expedites surface reaction kinetics, leading to an onset potential of 0.8 V versus RHE with a photocurrent of 2.7 mA cm?2 at 1.23 V and 4.6 mA cm?2 at 1.6 V versus RHE. This sandwich photoanode shows an excellent stability for 5 h and achieves an overall Faradaic efficiency of 95% for O2 generation. This is the best performance ever reported for Fe2O3/Fe2TiO5 photoanodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号