首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
Research into the formation of InAs quantum dots (QDs) in GaAs using the metalorganic vapor phase epitaxy technique is presented. This technique is deemed to be cheaper than the more often used and studied molecular beam epitaxy. The best conditions for obtaining a high photoluminescence response, indicating a good material quality, have been found among a wide range of possibilities. Solar cells with an excellent quantum efficiency have been obtained, with a sub‐bandgap photo‐response of 0.07 mA/cm2 per QD layer, the highest achieved so far with the InAs/GaAs system, proving the potential of this technology to be able to increase the efficiency of lattice‐matched multi‐junction solar cells and contributing to a better understanding of QD technology toward the achievement of practical intermediate‐band solar cells. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
The direction of the piezoelectric field in InGaN/GaN multiple quantum-well (MQW) structures grown by metal-organic vapor deposition (MOCVD) was determined using excitation-power-density variable photoluminescence (PL). By comparing the excitation-power-density dependence of the shift of the PL peak and the change of the full-width at half-maximum (FWHM) of the peak from an InGaN/GaN MQW structure and an InGaN MQW-based light-emitting diode (LED), the piezoelectric field in the InGaN/GaN MQW structures was unambiguously determined to be pointing toward the substrate. This result helps to identify the surface polarity of the LED wafer as Ga-faced.  相似文献   

3.
We have determined the shape of InAs quantum dots using reflection high energy electron diffraction. Our results indicate that self-assembled InAs islands possess a pyramidal shape with {136} bounding facets. This shape is characterized by C2v symmetry and a parallelogram base, which is elongated along the direction. Cross-sectional transmission electron microscopy images taken along the [110] and directions as well as atomic force microscopy images strongly support the {136} shape. Furthermore, polarization-resolved photoluminescence spectra show strong in-plane anisotropy, with emission predominantly polarized along the direction, consistent with the proposed quantum dot shape.  相似文献   

4.
In this paper, we investigate the effect of interfacial layers on GalnAs(P)/GalnAsP and GalnAs/InP multiple quantum well structures with x-ray diffraction and photoluminescence. We observe a decrease in the room temperature and low temperature photoluminescence intensity as the number of periods is increased which we attribute to the interfaces. Furthermore, different growth interruption schemes show that decomposed As species from TBA have an effect on the structural and optical quality of these structures at both the lower and upper interfaces due to As carry-over. The effect of this carry-over is shown in structural measurements and laser diode results.  相似文献   

5.
The edge-emitting electroluminescence (FL) state of polarization of blue and green InGaN/GaN light-emitting diodes (LEDs) grown in EMCORE’s commercial reactors was studied and compared to theoretical evaluations. Blue (∼475 nm) LEDs exhibit strong EL polarization, up to a 3:1 distinction ratio. Green (∼530 nm) LEDs exhibit smaller ratios of about 1.5:1. Theoretical evaluations for similar InGaN/GaN superlattices predicted a 3:1 ratio between light polarized perpendicular (E⊥c) and light polarized parallel (E‖c) to the c axis. For the blue LEDs, a quantum well-like behavior is suggested because the E⊥c mode dominates the E‖c mode 3:1. In contrast, for the green LEDs, a mixed quantum well (QW)-quantum dot (QD) behavior is proposed, as the ratio of E⊥c to E‖c modes drops to 1.5:1. The EL polarization fringes were also observed, and their occurrence may be attributed to a symmetric waveguide-like behavior of the InGaN/GaN LED structure. A large 40%/50% drop in the surface root mean square (RMS) from atomic force microscopy (AFM) scans on blue/green LEDs with and without EL fringes points out that better surfaces were achieved for the samples exhibiting fringing. At the same time, a 25%/10% increase in the blue/green LED photoluminescence (PL) intensity signal was found for samples displaying EL interference fringes, indicating superior material quality and improved LED structures.  相似文献   

6.
Novel semiconductor quantum dots (QDs), grown in tetrahedral-shaped recesses (TSRs) formed on a (111)B GaAs substrate, are described from both material science and device application points of view. After explaining the fabrication procedure for TSRs, growth of InGaAs QDs and their optical properties are explained. It is revealed that an InGaAs QD of indium-rich chemical composition is formed spontaneously at the bottom of each TSR. The mechanism of the QD formation is discussed in detail. It is proved from magneto-photoluminescence that the QDs actually have optical properties peculiar to zero-dimensional confinement. Several experimental results indicating excellent growth controllability of the QDs are presented. Finally, recent challenges to apply the QDs to electronic memory devices are reported. Two kinds of devices, where the position of individual QD is artificially controlled, are proposed for the first time and the preliminary experimental results are explained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号