首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
综述了放电等离子烧结(SPS)技术在国内外的发展概况,简单介绍了SPS系统的基本配置,深入探讨了SPS的烧结机理及其技术特点,着重介绍了SPS技术在制备高致密度、细晶粒陶瓷等方面的应用,并对燃烧合成氮化硅粉体进行了放电等离子烧结的试验研究,得到了机械性能优于热压烧结的氮化硅陶瓷.结果证明放电等离子烧结在陶瓷的快速致密化中显示出了极大的优势,是一项有重要使用价值和广泛前景的新技术.  相似文献   

2.
SPS制备亚微米晶氧化铝陶瓷   总被引:2,自引:0,他引:2  
以商业α-Al2O3粉体为原料, MgO为烧结助剂, 采用放电等离子烧结技术(SPS)制备亚微米晶氧化铝陶瓷. 系统研究了烧结温度、烧结助剂含量对亚微米晶氧化铝陶瓷的致密化过程及显微结构的影响. 分析结果表明, 1250℃以及0.05wt%分别是最佳的烧结温度和烧结助剂含量; 在此条件下获得的亚微米晶氧化铝陶瓷, 其相对密度达到99.8%TD(theoretical density),平均晶粒尺寸约0.68μm,显微硬度(HV5)达到20.75GPa,在3~5μm中红外范围内直线透过率超过83%. 当MgO掺杂量超过0.1wt%时, 第二相MgAl2O4形成, 引起光散射, 降低红外透过率.  相似文献   

3.
用放电等离子技术烧结TiB2陶瓷   总被引:5,自引:0,他引:5  
利用脉冲大电流快速烧结技术(也称放电等离子烧结SPS技术)研究了TiB2的烧结过程。结果表明:升温速率对烧结样品的相对密度、晶粒尺寸及烧结过程中真空室气压均有重要影响。最佳的升温速率使TiB2烧结晶粒相对最小、烧结体相对密度较高。分析认为,在SPS条件下的快速升温有利于颗粒表面活化,烧结体晶粒尺寸既受控于烧结时间,也受控于晶粒生长活化能。  相似文献   

4.
机械合金化和放电等离子烧结制备Y3Al5O12陶瓷   总被引:2,自引:0,他引:2  
采用机械合金化和放电等离子烧结制备YAG陶瓷,研究了球磨时间对原料颗粒大小和烧结合成YAG纯度的影响,并利用x射线衍射(XRD)、扫描电镜(SEM)等手段对反应过程及产物形貌和物相进行了分析.研究结果表明,机械合金化Y2O3和Al2O3粉体,可明显细化氧化物颗粒,球磨20h后,Y2O3和Al2O3晶粒大小约为34nm和32nm.球磨处理的Y2O3和Al2O3粉体具有很高的活性,促进放电等离子烧结低温反应合成和获得致密的YAG.对球磨20h的粉体在不同温度进行放电等离子烧结,在1200℃即可获得纯YAG陶瓷,在1500℃烧结,可得到相对密度为99.5%的YAG陶瓷.1500℃烧结的块体在可见光范围内透过率为13.8%.  相似文献   

5.
用机械活化-放电等离子烧结(MA-SPS)方法原位制备TiAl-Al2O3材料.MA后得到晶粒度小于25nm的纳米粉体,其中Al2O3起到机械活化和细化晶粒的作用,促使粉体快速纳米化;SPS原位烧结后得到密度为3.73g/cm3的(α2 γ)双相组织,组成相的晶粒度小于130nm.  相似文献   

6.
采用等离子球磨技术制得W-C-10Co-0.9VC-0.3Cr_3C_2纳米复合粉体,并利用单向模压成型法将其压制成生坯,再经低压烧结一步法制备成硬质合金。研究表明,等离子球磨3h所获得的复合粉体呈片层状形貌,并且成分分布均匀。在1 380℃及1 400℃烧结时,由于等离子球磨的特殊作用,VC、Cr_3C_2对WC晶粒长大抑制作用突显。1 380℃烧结制备的硬质合金,致密度为99.2%,WC平均晶粒尺寸为250nm,硬度和横向断裂强度分别为92.3HRA和2 443 MPa,具有最佳的WC晶粒尺寸与致密度配合,以及最佳的综合力学性能。  相似文献   

7.
两段式无压烧结制备纳米二氧化锆(3Y)材料   总被引:3,自引:0,他引:3  
研究了两段式无压烧结制备纳米二氧化锆(ZrO_2)(3Y)陶瓷材料过程中晶粒生长与致密化的协同控制。将粒度为30nm的商品纳米ZrO_2(3Y)粉体进行冷等压成型制成相对密度为49%的素坯,然后将坯体加热至1 250℃以获得94%的相对密度,后降温至1 050℃保温20 h,制得相对密度大于99%晶粒尺寸为100 nm左右的ZrO_2(3Y)。研究表明,在烧结过程中利用晶粒生长与气孔收缩的活化能的差异以协调晶粒生长与致密化的关系,找出晶界迁移与晶界扩散、晶格扩散协同作用区域,在该区域晶粒生长受到抑制,而致密化得以维持,从而实现晶粒生长的抑制和坯体的完全致密化是两段式无压烧结的关键所在。  相似文献   

8.
放电等离子快速烧结纳米3Y-TZP材   总被引:17,自引:0,他引:17  
本文采用放电等离子烧结技术(SPS)快速烧结结纳米3Y-TZP材料,利用SPS技术快速烧结,可制备出完整、致密的3Y-TZP材料,在烧结温度为1300℃,保温3min条件下,相对密度达98.2%,晶粒仅100 ̄130nm,研究发现,材料的密度随烧结温度的变化趋势与一般快速烧结有明显区别;材料的晶粒随烧结温度的提高而长大,但长大幅度小于其他一些烧结方法所得的3Y-TZP材料,本研究对这些现象进行了理  相似文献   

9.
Ti-Al-Al2O3纳米粉体的机械活化-放电等离子烧结   总被引:2,自引:0,他引:2  
王志伟 《材料保护》2005,38(9):54-56
TiAl基合金是很有发展潜力的高温结构材料,为实现快速高效制备此材料,采用新型的机械活化-放电等离子烧结(MA-SPS)制备纳米材料的有效方法,原位制备Ti-Al金属间化合物Ti-47%Al-10%Al2O3(Al为原子分数,Al2O3为质量分数)材料.介绍了放电等离子烧结这种新兴的纳米固体材料制备技术的特点,结合Ti-Al基合金的具体制备工艺,对MA-SPS的特征予以详细分析研究.通过X射线衍射、扫描电镜、透射电镜等分析,经机械球磨活化后,得到晶粒度小于24 nm的纳米单质元素粉体,为后续原位烧结提供合适的烧结原料.其中添加的Al2O3起到细化晶粒、促进纳米化和机械活化、提高出粉率等作用.纳米粉体在合适的参数下经放电等离子烧结后,可得到致密度达98.7%的(TiAl Ti3Al)理想双相组织,其成分的晶粒度小于91 nm,成为纳米固体材料.  相似文献   

10.
采用化学气相沉积法(CVD)对纳米氧化锆陶瓷粉粒进行表面包碳修饰.利用XRD、TEM、HRTEM、SEM等分析手段对粉体的晶型结构、包裹情况和烧结体的显微结构进行了表征.结果表明,纳米ZrO2粉体表面包碳后,在真空烧结过程中,包碳层大大限制了晶粒的长大.在1250℃/2h下烧结获得了致密度约95%,晶粒大小为85 nm的烧结体;完整、均匀的包裹层和分散良好的粉体是获得晶粒细小,致密度较高的烧结体的前提条件;烧结后获得了t m双相组织.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号