首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents a kind of controller synthesis method for fuzzy dynamic systems based on a piecewise smooth Lyapunov function. The basic idea of the proposed approach is to construct controllers for the fuzzy dynamic systems in such a way that a piecewise continuous Lyapunov function can be used to establish the global stability with H/sub /spl infin// performance of the resulting closed loop fuzzy control systems. It is shown that the control laws can be obtained by solving a set of linear matrix inequalities that is numerically feasible with commercially available software. An example is given to illustrate the application of the proposed methods.  相似文献   

2.
This paper presents a novel approach to stability analysis of a fuzzy large-scale system in which the system is composed of a number of Takagi-Sugeno (T-S) fuzzy subsystems with interconnections. The stability analysis is based on Lyapunov functions that are continuous and piecewise quadratic. It is shown that the stability of the fuzzy large-scale systems can be established if a piecewise Lyapunov function can be constructed, and, moreover, the function can be obtained by solving a set of linear matrix inequalities (LMIs) that are numerically feasible. It is also demonstrated via a numerical example that the stability result based on the piecewise quadratic Lyapunov functions is less conservative than that based on the common quadratic Lyapunov functions. The H infinity controllers can also be designed by solving a set of LMIs based on these powerful piecewise quadratic Lyapunov functions.  相似文献   

3.
This paper presents a stability analysis method for discrete-time Takagi-Sugeno fuzzy dynamic systems based on a piecewise smooth Lyapunov function. It is shown that the stability of the fuzzy dynamic system can be established if a piecewise Lyapunov function can be constructed, and moreover, the function can be obtained by solving a set of linear matrix inequalities that is numerically feasible with commercially available software. It is also demonstrated via numerical examples that the stability result based on the piecewise quadratic Lyapunov functions is less conservative than that based on the common quadratic Lyapunov functions.  相似文献   

4.
This paper addresses the robust H static output feedback (SOF) controller design problem for a class of uncertain fuzzy affine systems that are robust against both the plant parameter perturbations and controller gain variations. More specifically, the purpose is to synthesize a non-fragile piecewise affine SOF controller guaranteeing the stability of the resulting closed-loop fuzzy affine dynamic system with certainH performance index. Based on piecewise quadratic Lyapunov functions and applying some convexification procedures, two different approaches are proposed to solve the robust and non-fragile piecewise affine SOF controller synthesis problem. It is shown that the piecewise affine controller gains can be obtained by solving a set of linear matrix inequalities (LMIs). Finally, simulation examples are given to illustrate the effectiveness of the proposed methods.  相似文献   

5.
This paper presents a novel approach to stability analysis of a fuzzy large-scale system in which the system is composed of a number of Takagi-Sugeno (T-S) fuzzy subsystems with interconnections. The stability analysis is based on Lyapunov functions that are continuous and piecewise quadratic. It is shown that the stability of the fuzzy large-scale systems can be established if a piecewise Lyapunov function can be constructed, and, moreover, the function can be obtained by solving a set of linear matrix inequalities (LMIs) that are numerically feasible. It is also demonstrated via a numerical example that the stability result based on the piecewise quadratic Lyapunov functions is less conservative than that based on the common quadratic Lyapunov functions. The H/sub /spl infin// controllers can also be designed by solving a set of LMIs based on these powerful piecewise quadratic Lyapunov functions.  相似文献   

6.
This work presents an H/sub /spl infin// controller design method for fuzzy dynamic systems based on techniques of piecewise smooth Lyapunov functions and bilinear matrix inequalities. It is shown that a piecewise continuous Lyapunov function can be used to establish the global stability with H/sub /spl infin// performance of the resulting closed-loop fuzzy control systems and the control laws can be obtained by solving a set of bilinear matrix inequalities (BMIs). Two examples are given to illustrate the application of the proposed methods.  相似文献   

7.
This paper presents delay-dependent stability analysis and controller synthesis methods for discrete-time Takagi-Sugeno (T-S) fuzzy systems with time delays. The T-S fuzzy system is transformed to an equivalent switching fuzzy system. Consequently, the delay-dependent stabilization criteria are derived for the switching fuzzy system based on the piecewise Lyapunov function. The proposed conditions are given in terms of linear matrix inequalities (LMIs). The interactions among the fuzzy subsystems are considered in each subregion, and accordingly the proposed conditions are less conservative than the previous results. Since only a set of LMIs is involved, the controller design is quite simple and numerically tractable. Finally, a design example is given to show the validity of the proposed method.  相似文献   

8.
This paper presents a switching fuzzy controller design for a class of nonlinear systems. A switching fuzzy model is employed to represent the dynamics of a nonlinear system. In our previous papers, we proposed the switching fuzzy model and a switching Lyapunov function and derived stability conditions for open-loop systems. In this paper, we design a switching fuzzy controller. We firstly show that switching fuzzy controller design conditions based on the switching Lyapunov function are given in terms of bilinear matrix inequalities, which is difficult to design the controller numerically. Then, we propose a new controller design approach utilizing an augmented system. By introducing the augmented system which consists of the switching fuzzy model and a stable linear system, the controller design conditions based on the switching Lyapunov function are given in terms of linear matrix inequalities (LMIs). Therefore, we can effectively design the switching fuzzy controller via LMI-based approach. A design example illustrates the utility of this approach. Moreover, we show that the approach proposed in this paper is available in the research area of piecewise linear control.  相似文献   

9.
For discrete-time Takagi-Sugeno (TS) fuzzy systems, we propose an H/sub /spl infin// state-feedback fuzzy controller associated with a fuzzy weighting-dependent Lyapunov function. The controller, which is designed via parameterized linear matrix inequalities (PLMIs), employs not only the current-time but also the one-step-past information on the time-varying fuzzy weighting functions. Appropriately selecting the structures of variables in the PLMIs allows us to find an LMI formulation as a special case.  相似文献   

10.
In this paper, two new relaxed stabilization criteria for discrete-time T-S fuzzy systems are proposed. In the beginning, the operation state space is divided into several subregions, and then, the T-S fuzzy system is transformed to an equivalent switching fuzzy system corresponding to each subregion. Consequently, based on the piecewise Lyapunov function, the stabilization criteria of the switching fuzzy system are derived. The criteria have two features: 1) the behavior of the two successive states of the system is considered in the inequalities and 2) the interactions among the fuzzy subsystems in each subregion Sj are presented by one matrix Xj. Due to the above two features, the feasible solutions of the inequalities in the criteria are much easier to be found. In other words, the criteria are much more relaxed than the existing criteria proposed in other literature. The proposed conditions in the criteria and the fuzzy control design can be solved and achieved by means of linear matrix inequality tools. Two examples are given to present the superiority of the proposed criteria and the effectiveness of the fuzzy controller's design, respectively.  相似文献   

11.
Generalized H2 (GH2) stability analysis and controller design of the uncertain discrete-time Takagi-Sugeno (T-S) fuzzy systems with state delay are studied based on a switching fuzzy model and piecewise Lyapunov function. GH2 stability sufficient conditions are derived in terms of linear matrix inequalities (LMIs). The interactions among the fuzzy subsystems are considered. Therefore, the proposed conditions are less conservative than the previous results. Since only a set of LMIs is involved, the controller design is quite simple and numerically tractable. To illustrate the validity of the proposed method, a design example is provided.  相似文献   

12.
In this paper we propose a systematic switching control design method for a class of nonlinear discrete time hybrid systems. The novelty of the adopted approach is in the fact that unlike conventional control the control burden is shifted to a logical level thus creating the need for the development of new analysis/design methods.  相似文献   

13.
基于LMI方法的T-S模糊系统的H∞输出反馈控制器设计   总被引:2,自引:0,他引:2  
刘晓东  张庆灵 《控制与决策》2002,17(Z1):743-746
研究了一类T-S模糊系统的H∞控制问题,给出了T-S模糊系统一个新的H∞输出反馈控制器设计方法.该方法充分考虑了模糊子系统间的相互作用.H∞输出反馈控制器可通过求解一组线性矩阵不等式获得.最后通过数值仿真例子,说明所提出的设计方法的可行性.  相似文献   

14.
This work proposes a gain scheduling adaptive control scheme based on fuzzy systems, neural networks and genetic algorithms for nonlinear plants. A fuzzy PI controller is developed, which is a discrete time version of a conventional one. Its data base as well as the constant PI control gains are optimally designed by using a genetic algorithm for simultaneously satisfying the following specifications: overshoot and settling time minimizations and output response smoothing. A neural gain scheduler is designed, by the backpropagation algorithm, to tune the optimal parameters of the fuzzy PI controller at some operating points. Simulation results are shown to demonstrate the efficiency of the proposed structure for a DC servomotor adaptive speed control system used as an actuator of robotic manipulators.  相似文献   

15.
This paper is concerned with the robust stabilization by state feedback of a linear discrete-time system with time-varying uncertain parameters. An optimization problem involving a set of linear matrix inequalities and scaling parameters provides both the robust feedback gain and the piecewise Lyapunov function used to ensure the closed-loop stability. In the case of linear time-varying systems involving the convex combination of two matrices, only two scaling parameters constrained into the interval [0,?1] are needed, allowing a simple numerical solution as illustrated by means of examples.  相似文献   

16.
This paper proposes output feedback controller design methods for uncertain piecewise linear systems based on piecewise quadratic Lyapunov function. The α-stability of closed-loop systems is also considered. It is shown that the output feedback controller design procedure of uncertain piecewise linear systems with α-stability constraint can be cast as solving a set of bilinear matrix inequalities (BMIs). The BMIs problem in this paper can be solved iteratively as a set of two convex optimization problems involving linear matrix inequalities (LMIs) which can be solved numerically efficiently. A numerical example shows the effectiveness of the proposed methods.  相似文献   

17.
Inverse controller design for fuzzy interval systems   总被引:1,自引:0,他引:1  
This paper aims at designing and analyzing an inverse controller for stable inversible (minimum phase) fuzzy interval linear and/or multilinear systems. The controller is designed from the fuzzy interval ranges of the system parameters using an /spl alpha/-cut methodology. Indeed, for a given /spl alpha/-cut of the fuzzy system parameters representing an uncertainty level, the control objective can be viewed as maintaining the system output within a tolerance envelope, around the exact trajectory, specified by the degree of preference /spl alpha/ on the fuzzy trajectory. The stability is ensured in the way that the controller restricts the system output divergence within the tolerance envelope. The validity of the proposed method is illustrated by simulation examples.  相似文献   

18.
19.
The notion of decomposition is generalized to provide more freedom in constructing vector Lyapunov functions for stability analysis of nonlinear dynamic systems. A generalized decomposition is defined as a disjoint decomposition of a system which is obtained by expanding the state-space of a given system. An inclusion principle is formulated for the solutions of the expansion to include the solutions of the original system, so that stabliity of the expansion implies stability of the original system. Stability of the expansion can then be established by standard disjoint decompositions and vector Lyapunov functions. The applicability, of the new approach is demonstrated using the Lotka-Voiterra equations.  相似文献   

20.
This paper presents an entirely new constructive global analysis methodology for a class of hybrid systems known as piecewise linear systems (PLS). This methodology infers global properties of PLS solely by studying the behavior at switching surfaces associated with PLS. The main idea is to analyze impact maps, i.e., maps from one switching surface to the next switching surface. Such maps are known to be "unfriendly" maps in the sense that they are highly nonlinear, multivalued, and not continuous. We found, however, that an impact map induced by an linear time-invariant flow between two switching surfaces can be represented as a linear transformation analytically parametrized by a scalar function of the state. This representation of impact maps allows the search for surface Lyapunov functions (SuLF) to be done by simply solving a semidefinite program, allowing global asymptotic stability, robustness, and performance of limit cycles and equilibrium points of PLS to be efficiently checked. This new analysis methodology has been applied to relay feedback, on/off and saturation systems, where it has shown to be very successful in globally analyzing a large number of examples. In fact, it is still an open problem whether there exists an example with a globally stable limit cycle or equilibrium point that cannot be successfully analyzed with this new methodology. Examples analyzed include systems of relative degree larger than one and of high dimension, for which no other analysis methodology could be applied. This success in globally analyzing certain classes of PLS has shown the power of this new methodology, and suggests its potential toward the analysis of larger and more complex PLS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号