首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 66 毫秒
1.
优化初始聚类中心的K-means聚类算法   总被引:1,自引:0,他引:1       下载免费PDF全文
针对传统K-means算法对初始中心十分敏感,聚类结果不稳定问题,提出了一种改进K-means聚类算法。该算法首先计算样本间的距离,根据样本距离找出距离最近的两点形成集合,根据点与集合的计算公式找出其他所有离集合最近的点,直到集合内数据数目大于或等于[α]([α]为样本集数据点数目与聚类的簇类数目的比值),再把该集合从样本集中删除,重复以上步骤得到K(K为簇类数目)个集合,计算每个集合的均值作为初始中心,并根据K-means算法得到最终的聚类结果。在Wine、Hayes-Roth、Iris、Tae、Heart-stalog、Ionosphere、Haberman数据集中,改进算法比传统K-means、K-means++算法的聚类结果更稳定;在Wine、Iris、Tae数据集中,比最小方差优化初始聚类中心的K-means算法聚类准确率更高,且在7组数据集中改进算法得到的轮廓系数和F1值最大。对于密度差异较大数据集,聚类结果比传统K-means、K-means++算法更稳定,更准确,且比最小方差优化初始聚类中心的K-means算法更高效。  相似文献   

2.
针对传统K-means算法对初始聚类中心敏感的问题,提出了基于数据样本分布情况的动态选取初始聚类中心的改进K-means算法。该算法根据数据点的距离构造最小生成树,并对最小生成树进行剪枝得到K个初始数据集合,得到初始的聚类中心。由此得到的初始聚类中心非常地接近迭代聚类算法收敛的聚类中心。理论分析与实验表明,改进的K-means算法能改善算法的聚类性能,减少聚类的迭代次数,提高效率,并能得到稳定的聚类结果,取得较高的分类准确率。  相似文献   

3.
K-means算法的初始聚类中心的优化   总被引:10,自引:3,他引:7       下载免费PDF全文
传统的K-means算法对初始聚类中心敏感,聚类结果随不同的初始输入而波动,针对K-means算法存在的问题,提出了基于密度的改进的K-means算法,该算法采取聚类对象分布密度方法来确定初始聚类中心,选择相互距离最远的K个处于高密度区域的点作为初始聚类中心,理论分析与实验结果表明,改进的算法能取得更好的聚类结果。  相似文献   

4.
传统的K-means算法随机选取初始聚类中心,聚类结果不稳定,容易陷入局部最优解。针对聚类中心的敏感性,提出一种优化初始聚类中心的K-means算法。此算法利用数据集样本的分布特征计算样本点的密度并进行分类,在高密度区域中选择K个密度最大且相互距离超过某特定阈值的点作为初始聚类中心,并对低密度区域的噪声点单独处理。实验证明,优化后的算法能取得更好的聚类效果,且稳定性增强。  相似文献   

5.
传统K-means算法随机选取初始聚类中心,容易导致聚类结果不稳定,而优化初始聚类中心的K-means算法需要一定的参数选择,也会使聚类结果缺乏客观性。为此,根据样本空间分布紧密度信息,提出利用最小方差优化初始聚类中心的K-means算法。该算法运用样本空间分布信息,通过计算样本空间分布的方差得到样本紧密度信息,选择方差最小(即紧密度最高)且相距一定距离的样本作为初始聚类中心,实现优化的K-means聚类。在UCI机器学习数据库数据集和含有噪音的人工模拟数据集上的实验结果表明,该算法不仅能得到较好的聚类结果,且聚类结果稳定,对噪音具有较强的免疫性能。  相似文献   

6.
一种优化初始中心的K-means粗糙聚类算法   总被引:3,自引:0,他引:3       下载免费PDF全文
针对K-means算法的不足,提出了一种优化初始中心的聚类算法。首先,采用密度敏感的相似性度量来计算对象的密度,基于对象之间的距离和对象的邻域,选择相互距离尽可能远的数据点作为初始聚类中心。然后,采用基于粗糙集的K-means聚类算法处理边界对象,同时利用均衡化函数自动生成聚类数目。实验表明,算法具有较好的聚类效果和综合性能。  相似文献   

7.
迄今为止,在数据挖掘领域,人们已经实现了多种聚类算法,其中使用最广泛的当属K-means聚类算法.然而,在数据挖掘中,K-means算法面临的一个主要问题就是初始中心点选择问题.本文提出了一种结合关系矩阵和度中心性(Degree Centrality)的分析方法,从而确定K-means算法初始的k个中心点.与传统方法相比,本文算法可得到更加优质的聚类结果.实验结果表明该算法的有效性和可行性.  相似文献   

8.
基于邻域模型的K-means初始聚类中心选择算法   总被引:3,自引:0,他引:3  
曹付元  梁吉业  姜广 《计算机科学》2008,35(11):181-184
传统的K-means算法由于其方法简单,在模式识别和机器学习中被广泛讨论和应用。但由于K—means算法随机选择初始聚类中心,而初始聚类中心的选择对最终的聚类结果有着直接的影响,因此算法不能保证得到一个唯一的聚类结果。利用邻域模型中对象邻域的上下近似,定义了对象邻域耦合度和分离度的概念,给出了对象在初始聚类中心选择中的重要性,提出了一种初始聚类中心的选择算法。另外,分析了邻域模型中三种范数对聚类精度的影响,并和随机选择初始聚类中心、CCIA选择初始聚类中心算法进行了比较,实验结果表明,该算法是有效的。  相似文献   

9.
针对K-means算法中聚类结果易受初始聚类中心影响的缺点,提出一种改进初始聚类中心选择的算法.该算法不断寻找最大聚类,并利用距离最大的两个数据对象作为开始的聚类中心对该聚类进行分裂,如此反复,直到得到指定聚类中心个数.用KDD CUP99数据集对改进算法进行仿真实验,实验数据表明,用该算法获得的聚类中心进行聚类相对原始的K-means算法,能获得更好的聚类结果.  相似文献   

10.
传统的K-means算法选取初始聚类中心时的不确定性会导致聚类结果不稳定。论文提出了基于相异度的邻域及其结构系数的概念,从最小的结构系数开始,按照其递增顺序寻找初始聚类中心;随后采用依次缩小邻域的技巧逐步探索,直到找到K个初始聚类中心。该方法同时得到li(i=0,1,2,…,q)个初始聚类中心及其对应的数据分类结果。实验证明,对比于以往的算法,新算法具有更高的分类准确率以及更少的迭代次数。  相似文献   

11.
基于初始中心优化的遗传K-means聚类新算法   总被引:2,自引:2,他引:0  
一个好的K-means聚类算法至少要满足两个要求:(1)能反映聚类的有效性,即所分类别数要与实际问题相符;(2)具有处理噪声数据的能力。传统的K-means算法是一种局部搜索算法,存在着对初始化敏感和容易陷入局部极值的缺点。针对此缺点,提出了一种优化初始中心的K-means算法,该算法选择相距最远的处于高密度区域的k个数据对象作为初始聚类中心。实验表明该算法不仅具有对初始数据的弱依赖性,而且具有收敛快,聚类质量高的特点。为体现聚类的有效性,获得更高精度的聚类结果,提出了将优化的K-means算法(PKM)和遗传算法相结合的混合算法(PGKM),该算法在提高紧凑度(类内距)和分离度(类间距)的同时自动搜索最佳聚类数k,对k个初始中心优化后再聚类,不断地循环迭代,得到满足终止条件的最优聚类。实验证明该算法具有更好的聚类质量和综合性能。  相似文献   

12.
K-means初始聚类中心的选择算法   总被引:1,自引:0,他引:1  
郑丹  王潜平 《计算机应用》2012,32(8):2186-2192
K-means算法随机选取初始聚类中心,容易造成聚类准确率低且聚类结果不稳定。针对这一问题,提出一种初始聚类中心的选择算法。通过k-dist的差值(DK)图分析,确定数据点在k-dist图上的位置,选择主要密度水平曲线上k-dist值最小的点作为初始聚类中心。实验证明,改进算法选择的初始聚类中心唯一,聚类结果稳定,聚类准确率高,迭代次数少。  相似文献   

13.
针对K-means算法中的初始聚类中心是随机选择这一缺点进行改进,利用提出的新算法选出初始聚类中心,并进行聚类。这种算法比随机选择初始聚类中心的算法性能有所提高,具有更高的准确性。  相似文献   

14.
The traditional K-means is very sensitive to initial clustering centers and the clustering result will wave follow the different initial input. To remove this sensitivity, a new method is proposed to get initial clustering centers. This method is as follows: provide a normalized distance function d(di,dj) in the fuzzy granularity space of data objects, then use the function to do a initial clustering work to these data objects who has a less distance than granularity dλ, then get the initial clustering centers. Approved by the test, this method has such advantages on increasing the rate of accuracy and reducing the program times.  相似文献   

15.
In this research, we propose two variants of the Firefly Algorithm (FA), namely inward intensified exploration FA (IIEFA) and compound intensified exploration FA (CIEFA), for undertaking the obstinate problems of initialization sensitivity and local optima traps of the K-means clustering model. To enhance the capability of both exploitation and exploration, matrix-based search parameters and dispersing mechanisms are incorporated into the two proposed FA models. We first replace the attractiveness coefficient with a randomized control matrix in the IIEFA model to release the FA from the constraints of biological law, as the exploitation capability in the neighbourhood is elevated from a one-dimensional to multi-dimensional search mechanism with enhanced diversity in search scopes, scales, and directions. Besides that, we employ a dispersing mechanism in the second CIEFA model to dispatch fireflies with high similarities to new positions out of the close neighbourhood to perform global exploration. This dispersing mechanism ensures sufficient variance between fireflies in comparison to increase search efficiency. The ALL-IDB2 database, a skin lesion data set, and a total of 15 UCI data sets are employed to evaluate efficiency of the proposed FA models on clustering tasks. The minimum Redundancy Maximum Relevance (mRMR)-based feature selection method is also adopted to reduce feature dimensionality. The empirical results indicate that the proposed FA models demonstrate statistically significant superiority in both distance and performance measures for clustering tasks in comparison with conventional K-means clustering, five classical search methods, and five advanced FA variants.  相似文献   

16.
K-means算法最佳聚类数确定方法   总被引:10,自引:0,他引:10  
K-means聚类算法是以确定的类数k为前提对数据集进行聚类的,通常聚类数事先无法确定。从样本几何结构的角度设计了一种新的聚类有效性指标,在此基础上提出了一种新的确定K-means算法最佳聚类数的方法。理论研究和实验结果验证了以上算法方案的有效性和良好性能。  相似文献   

17.
针对传统K均值聚类方法采用聚类前随机选择聚类个数K而导致的聚类结果不理想的问题,结合空间中的层次结构,提出一种改进的层次K均值聚类算法。该方法通过初步聚类,判断是否达到理想结果,从而决定是否继续进行更细层次的聚类,如此迭代执行,从而生成一棵层次型K均值聚类树,在该树形结构上可以自动地选择聚类的个数。标准数据集上的实验结果表明,与传统的K均值聚类方法相比,提出的改进的层次聚类方法的确能够取得较优秀的聚类效果。  相似文献   

18.
针对传统的K-均值算法聚类时所面临的维数灾难、初始聚类中心点难以确定的缺点,提出一种改进的K-均值算法,其核心思想是通过降维、基于密度及散布的初始中心点搜索等方法改进K-均值算法。实验结果证明改进后的算法无论在聚类精度还是在稳定性方面,都明显优于标准的K-均值算法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号