首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
使用高温石墨化炉对实验室自制的高强中模碳纤维进行连续石墨化处理,制备得到了强度4.86 GPa、模量541 GPa的高强高模碳纤维,并详细研究了石墨化处理过程中主要工艺参数对碳纤维结构与性能的影响。研究结果探讨掌握了高温石墨化(2 500℃)处理前后碳纤维微观结构的演变规律。  相似文献   

2.
以国产T800级PAN基碳纤维为原料,通过调整石墨化温度和牵伸率,制备出拉伸强度3.8 GPa和拉伸模量450 GPa的石墨纤维。研究发现,拉伸模量随石墨化处理的温度升高和牵伸比的增加而提高,而其拉伸强度随牵伸比的增加而下降。进一步分析石墨化处理过程中纤维微观结构参数发现,微观有序化和高取向是制备高强高模石墨纤维的关键。  相似文献   

3.
研究了国产高强中模碳纤维T800、高模碳纤维M50J及M55J的力学性能及其增强树脂基复合材料的界面结合强度(ILSS),并与日本东丽公司同级别碳纤维进行对比。结果表明:国产M55J碳纤维的拉伸模量为568 GPa,拉伸强度为4.50 GPa,日本东丽公司M55J的拉伸模量为561 GPa,拉伸强度为4.10 GPa,国产高模碳纤维表面石墨化程度高于日本东丽碳纤维,表面呈现更高惰性,其增强树脂基复合材料的ILSS略低于日本东丽碳纤维复合材料;将高强中模碳纤维与高模碳纤维混合后对树脂基体进行增强,混合碳纤维中随着高强中模碳纤维含量提高,其复合材料的ILSS提高幅度也随之增加。  相似文献   

4.
正宁波材料所特种纤维事业部在高强高模碳纤维国产化制备技术领域取得了重大突破,制备得到的高性能碳纤维拉伸强度为4.86 GPa、拉伸模量为541 GPa,在模量达到国外同类产品性能(540 GPa)的同时,拉伸强度远优于国外产品,从而打破了国外在该领域的垄断并填补了国内技术空白。高强高模碳纤维又称为石墨纤维,与传统高强碳纤维相比,其含碳量高达99%以上,且具有更高的模量。此  相似文献   

5.
正近日,宁波材料所在国产高强高模碳纤维关键制备技术方面取得重要进展,制备得到拉伸强度5.24 GPa、拉伸模量593 GPa的高强高模碳纤维,实现国产M60J关键制备技术的突破。高强高模碳纤维具有拉伸模量高、热膨胀系数小、  相似文献   

6.
<正>2018年3月20日,中国科学院宁波材料技术与工程研究所制备出拉伸强度5.24 GPa、拉伸模量593 GPa的高强高模碳纤维,实现了国产高强高模碳纤维M60J关键制备技术的突破。2016年1月,宁波材料所在国内率先实现国产M55J制备技术重大突破,同年9月进行了制备技术验证,并获得拉伸强度4.15 GPa、拉伸模量585 GPa的高强高模碳扦维。后续研究进一步实现了国产M55J高强高模碳纤维连续稳定生产,纤维主体性能批间批内离散系数<5%。  相似文献   

7.
正据报道,中国科学院宁波材料技术与工程研究所特种纤维事业部在高强高模碳纤维国产化制备技术领域取得重大突破,制备得到的高性能碳纤维拉伸强度、拉伸模量分别为4.86GPa、541GPa。在拉伸模量达到国外同类产品性能(540GPa)的同时,其拉伸强度远优于国外产品(4.02GPa),从而打破国外在该领域的垄断,并填补国内相关技术空白。  相似文献   

8.
以实验室自制T800级聚丙烯腈(PAN)基高强中模碳纤维为原料,经连续石墨化处理得到M50J级、M55J级高模量碳纤维,以X射线衍射(XRD)、Raman光谱为表征手段研究了高强碳纤维向高模量碳纤维转变过程中石墨微晶、取向、微孔含量、石墨化度等石墨特征结构的演变规律,并开展了PAN基碳纤维石墨特征结构与力学性能的关联性研究。研究结果表明:在高强碳纤维向高模量碳纤维转变过程中,随着石墨微晶层间距d 002的下降以及石墨微晶堆砌厚度L c的增加,碳纤维的拉伸模量逐渐提升;石墨微晶层间距和微晶取向是影响碳纤维拉伸强度的两个主要因素,石墨微晶层间距d 002值增加、石墨微晶取向越高,纤维拉伸强度也越高;在高模量碳纤维的成型过程中,纤维内部微孔含量随着石墨化程度的提高而降低;经过高温石墨化处理后,碳纤维的拉伸强度会随着Raman光谱中无序结构D峰和石墨特征结构G峰积分强度比值I D /I G的下降而下降。  相似文献   

9.
对自制的两种不同直径的T800级高强中模碳纤维(NBF1,NBF2)的结构与性能进行了研究,并与日本东丽公司T800碳纤维进行了比较。结果表明:NBF1,NBF2的直径分别为5. 64,6. 31μm,均高于日本东丽公司T800碳纤维(5. 45μm),截面比日本东丽公司T800碳纤维规整; NBF1,NBF2的拉伸强度分别为5. 58,5. 56 GPa,略高于日本东丽公司T800碳纤维(5. 52 GPa),拉伸模量分别为293,295 GPa,略高于日本东丽公司T800碳纤维(290 GPa),断裂伸长率分别为1. 97%,1. 89%,均高于日本东丽公司T800碳纤维(1. 80%); NBF2的石墨微晶层间距为0. 352 7 nm,显著低于日本东丽公司T800碳纤维(0. 355 5 nm),NBF2具有更高的石墨化程度;碳纤维表面无序化程度越低,其拉伸强度越高。  相似文献   

10.
正2016年1月28日,中科院宁波材料所特种纤维事业部在高强高模碳纤维国产化制备技术领域取得了重大突破,制备得到的高性能碳纤维拉伸强度为4.86 GPa,拉伸模量为541 GPa,在模量达到国外同类产品M55J(540 GPa)的同时,其拉伸强度远优于M55J产品(4.02 GPa),从而打破了国外在该领域的技术垄断并填补了国内的技术空白。  相似文献   

11.
主要介绍了国内外聚丙烯腈基和沥青基高模量碳纤维的研究现状及发展趋势。⑴高模量碳纤维的发展方向:1980年代,两大高模量碳纤维都朝着高强高模方向发展,以满足飞机主承力结构件高强高模并重的需要,因而促使高模量碳纤维的性能从单一高模化向高强高模化方向迈进,如东丽公司的M50J和M60J的抗拉伸强度(σ)分别为4.12 GPa和3.92 GPa,抗拉伸模量(E)分别为475 GPa和588 GPa,与M50(σ:2.45 GPa,E:490 GPa)相比均大幅度提高;1990年代率先研制出XN-70(σ:3.3 GPa,E:690 GPa)和FT-700(σ:3.3 GPa,E:700 GPa)沥青基高强高模碳纤维产品不久,美国AMOCO公司也生产出Thorne K-1000(σ:3.1 GPa,E:956 GPa)商品,满足了工业界的需求。⑵原丝的品质是提升高强高模碳纤维性能的关键:人们特别关注聚合物单体、溶剂、环境等的净化,以及聚合纺丝工艺参数的选择和调整,目的是如何能生产出低灰份杂质,细直径,高碳收率,高取向度和结晶度,毛丝少,柔韧性好,均匀稳定的优质原纤维。优质原纤维是制备高强高模的物质基础。⑶热处理制备工序、设备选型及工艺参数的调控也是提高高强高模碳纤维性能不可或缺的条件:人们在热处理过程用DSC-TG(热分析仪)、EA(元素分析仪)、FE-SEM(场发射扫描电镜)、HRTEM(高分辨透射电镜)、XES(X-射线能谱仪)、XRD(X-射线衍射仪)、Raman(拉曼光谱)、NMR(核磁共振仪)、STM(原子力显微镜)和AAS(原子吸收光谱)等先进的测试分析方法以及万能材料试验机等,研究各工序的工艺参数对产品性能和结构的影响,并详细的用图表阐述之。前人研究的成果加速了世界高强高模碳纤维性能的提升。进而提出了提高我国高强高模碳纤维的关键技术(例如研制非硅系新油剂,加强各工序的净化度和设备加工精度,强化工艺参数调控精度和加强灵活可变性,分析测试的准确度和测试方法的统一性等)。同时简介了高模量碳纤维的应用领域和前景。  相似文献   

12.
主要介绍了国内外聚丙烯腈基和沥青基高模量碳纤维的研究现状及发展趋势。⑴高模量碳纤维的发展方向:1980年代,两大高模量碳纤维都朝着高强高模方向发展,以满足飞机主承力结构件高强高模并重的需要,因而促使高模量碳纤维的性能从单一高模化向高强高模化方向迈进,如东丽公司的M50J和M60J的抗拉伸强度(σ)分别为4.12 GPa和3.92 GPa,抗拉伸模量(E)分别为475 GPa和588 GPa,与M50(σ:2.45 GPa,E:490 GPa)相比均大幅度提高;1990年代率先研制出XN-70(σ:3.3 GPa,E:690 GPa)和FT-700(σ:3.3 GPa,E:700 GPa)沥青基高强高模碳纤维产品不久,美国AMOCO公司也生产出Thorne K-1000(σ:3.1 GPa,E:956 GPa)商品,满足了工业界的需求。⑵原丝的品质是提升高强高模碳纤维性能的关键:人们特别关注聚合物单体、溶剂、环境等的净化,以及聚合纺丝工艺参数的选择和调整,目的是如何能生产出低灰份杂质,细直径,高碳收率,高取向度和结晶度,毛丝少,柔韧性好,均匀稳定的优质原纤维。优质原纤维是制备高强高模的物质基础。⑶热处理制备工序、设备选型及工艺参数的调控也是提高高强高模碳纤维性能不可或缺的条件:人们在热处理过程用DSC-TG(热分析仪)、EA(元素分析仪)、FE-SEM(场发射扫描电镜)、HRTEM(高分辨透射电镜)、XES(X-射线能谱仪)、XRD(X-射线衍射仪)、Raman(拉曼光谱)、NMR(核磁共振仪)、STM(原子力显微镜)和AAS(原子吸收光谱)等先进的测试分析方法以及万能材料试验机等,研究各工序的工艺参数对产品性能和结构的影响,并详细的用图表阐述之。前人研究的成果加速了世界高强高模碳纤维性能的提升。进而提出了提高我国高强高模碳纤维的关键技术(例如研制非硅系新油剂,加强各工序的净化度和设备加工精度,强化工艺参数调控精度和加强灵活可变性,分析测试的准确度和测试方法的统一性等)。同时简介了高模量碳纤维的应用领域和前景。  相似文献   

13.
高模量碳纤维的现状及发展(1)   总被引:2,自引:0,他引:2  
主要介绍了国内外聚丙烯腈基和沥青基高模量碳纤维的研究现状及发展趋势。⑴高模量碳纤维的发展方向:1980年代,两大高模量碳纤维都朝着高强高模方向发展,以满足飞机主承力结构件高强高模并重的需要,因而促使高模量碳纤维的性能从单一高模化向高强高模化方向迈进,如东丽公司的M50J和M60J的抗拉伸强度(σ)分别为4.12 GPa和3.92 GPa,抗拉伸模量(E)分别为475 GPa和588 GPa,与M50(σ:2.45 GPa,E:490 GPa)相比均大幅度提高;1990年代率先研制出XN-70(σ:3.3 GPa,E:690 GPa)和FT-700(σ:3.3 GPa,E:700 GPa)沥青基高强高模碳纤维产品不久,美国AMOCO公司也生产出Thorne K-1000(σ:3.1 GPa,E:956 GPa)商品,满足了工业界的需求。⑵原丝的品质是提升高强高模碳纤维性能的关键:人们特别关注聚合物单体、溶剂、环境等的净化,以及聚合纺丝工艺参数的选择和调整,目的是如何能生产出低灰份杂质,细直径,高碳收率,高取向度和结晶度,毛丝少,柔韧性好,均匀稳定的优质原纤维。优质原纤维是制备高强高模的物质基础。⑶热处理制备工序、设备选型及工艺参数的调控也是提高高强高模碳纤维性能不可或缺的条件:人们在热处理过程用DSC-TG(热分析仪)、EA(元素分析仪)、FE-SEM(场发射扫描电镜)、HRTEM(高分辨透射电镜)、XES(X-射线能谱仪)、XRD(X-射线衍射仪)、Raman(拉曼光谱)、NMR(核磁共振仪)、STM(原子力显微镜)和AAS(原子吸收光谱)等先进的测试分析方法以及万能材料试验机等,研究各工序的工艺参数对产品性能和结构的影响,并详细的用图表阐述之。前人研究的成果加速了世界高强高模碳纤维性能的提升。进而提出了提高我国高强高模碳纤维的关键技术(例如研制非硅系新油剂,加强各工序的净化度和设备加工精度,强化工艺参数调控精度和加强灵活可变性,分析测试的准确度和测试方法的统一性等)。同时简介了高模量碳纤维的应用领域和前景。  相似文献   

14.
聚丙烯腈基碳纤维高温石墨化综述   总被引:1,自引:0,他引:1  
针对高模量碳纤维制备的关键工艺环节,综述总结了石墨化的基本工艺和石墨化高温处理过程纤维组成、结构的变化以及对最终碳纤维力学性能的影响,以期为我国高强高模碳纤维研发提供借鉴。综述结果表明,一步法石墨化高温处理有利于保持纤维的高强度特性,该工业化技术具有发展潜力;1 800℃前后纤维密度为先降后升;随着纤维对石墨晶体结构逐渐完善,层间距减少,模量提高;催化石墨化以及强磁场或射线处理可促使纤维石墨晶体结构的完善,但不易工业化实施;石墨化过程中适施应力是一项保持纤维强度和提高模量的有效措施。  相似文献   

15.
研究测试了不同国产碳纤维预浸料的拉伸性能,包括T700中温固化0°/90°拉伸性能、T700高温固化0°/90°拉伸性能、T800高温固化0°/90°拉伸性能。0°拉伸强度最大达到2062Mpa(江苏恒神),拉伸模量最大139GPa, 90°拉伸强度最大51Mpa,拉伸模量9.15GPa, 0°压缩强度最大1171MPa,压缩模量130GPa, 90°压缩强度最大达到187MPa,而T700和T800高温固化国产碳纤维的性能更加优异,0°拉伸强度高了将近1500MPa,拉伸模量提高了将近100GPa左右。结果表明,目前国产T700中温固化碳纤维预浸料力学性能基本与进口材料相当,大于中小型无人机拉伸性能设计准则,能够满足中小型无人机的结构设计和生产。  相似文献   

16.
力学性能作为评价高强碳纤维产品性能的重要指标,研究其影响因素显得尤为重要。通过改变制样过程中胶液种类、胶液配比、固化温度以及补强温度等因素,可达到提高高强碳纤维力学性能目的[1]。经过实验最终确定选用测试方法是:以TDE-85、粉末状DDM、丙酮作为胶液;其最佳胶液配比为TDE-85∶粉末状DDM∶丙酮=100∶40∶120(质量比);固化温度60℃、1 h,80℃、1 h,120℃、2 h;补强温度60℃、1 h。以T800H为试样测试结果:拉伸强度为5771 MPa,拉伸模量为235 GPa,加引伸计后拉伸模量为294 GPa;厂家T800H拉伸强度标准值为5490 MPa,拉伸模量为294 GPa。实验结果拉伸强度标准值比厂家给的标准值高280 MPa,拉伸模量吻合。  相似文献   

17.
正据外媒称,韩国晓星高新材料(株)(Hyosung Advanced Materials Corp.)碳纤维业务部开发了一种适用于下一代航空主次结构件的新型高强中模碳纤维。目前,该型号碳纤维仅有24k丝束产品,6k和3k的产品也即将面世。晓星官方表示,该型号碳纤维产品的拉伸强度高于国际市场上现有的中等模量碳纤维。主要力学性能包括,拉伸强度6120MPa,弹性模量293GPa(东丽T800碳纤维拉伸强度5490MPa,弹性模量294GPa)。目前,该产品有无上浆剂(适合热塑性树脂)  相似文献   

18.
以国产CNI QM55高强高模聚丙烯腈(PAN)基碳纤维、氰酸酯树脂为原料,利用热熔法制备高强高模PAN基碳纤维预浸料,通过纤维面密度、树脂含量、挥发分含量等来评价预浸料的物理性能,结合单向板的微观形貌与层间剪切强度分析单向板的界面结合性能,并对预浸料铺制单向板的力学性能进行表征。结果表明:CNI QM55碳纤维预浸料的纤维面密度为145 g/m2,树脂质量分数为35.5%,挥发分质量分数为0.164%,预浸料的物理性能满足复合材料的性能要求;以CNI QM55碳纤维预浸料制备的单向板0°拉伸强度为2 429 MPa, 0°拉伸模量为328.4 GPa,弯曲强度为1 171 MPa,弯曲模量为280 GPa,压缩强度为783 MPa,压缩模量为257 GPa,层间剪切强度为65.2 MPa,具有较好的界面黏接性能和力学性能,可满足加工应用要求。  相似文献   

19.
在乒乓球拍用碳纤维/环氧树脂复合材料表面进行了不同含量纳米微晶纤维素涂覆的改性处理,研究了纳米微晶纤维素含量对复合材料表面形貌、单丝拉伸强度、剪切强度和弯曲性能的影响,并对断口形貌进行了观察。结果表明,硅烷化改性处理并不会对纳米微晶纤维素的形貌和尺寸产生显著改变;去除上浆剂后的碳纤维抗拉强度约为3.44GPa,剪切强度约为48.3MPa,碳纤维的弯曲强度和弯曲模量分别为418.3MPa和20.1GPa,随着AMEO-NCC含量增加,AMEO-NCC涂覆的碳纤维的单丝抗拉强度、剪切强度、弯曲强度和弯曲模量都呈现先增加而后减小的特征,在AMEO-NCC含量为质量分数0.3%时取得单丝抗拉强度最大值,且都高于去除上浆剂后的碳纤维。  相似文献   

20.
研究了石英纤维与T700级碳纤维层间混杂树脂基复合材料的拉伸、压缩和面内剪切性能。研究结果表明,对于单向铺层的材料,相较纯石英纤维树脂基复合材料,混杂工艺能够使石英纤维树脂基复合材料的拉伸模量,从41.5 GPa增大到86.7 GPa,性能提升约109%,拉伸破坏强度保持相对稳定;压缩模量从40.1 GPa增大到77.1 GPa,压缩破坏强度保持相对稳定;对于材料的面内剪切性能没有明显影响。对于试验设计的多向铺层的材料,拉伸模量也提升了约55%,压缩模量提升了约50%,层合板的剪切模量提升60%。研究表明纤维混杂工艺能够明显改善石英纤维复合材料的刚度性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号