首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
结合压力容器缠绕成型工艺,研究了电子束固化树脂体系的工艺性能、固化参数及力、热性能;在国内首次采用电子束固化技术制备了T700碳纤维复合材料压力容器并通过水压试验验证。试验结果表明:电子束固化环氧体系(EB-1)具有较好的工艺性能和力学性能,耐热性能优良,达到191. 4℃;采用电子束固化工艺制备的T700碳纤维/EB-1复合材料NOL环的拉伸强度为2020 MPa,层间剪切强度为68. 9 MPa;制备的150 mm压力容器的特性系数PV/Wc为44 km,达到了目前同类热固化复合材料的水平,固化周期仅为热固化复合材料的1/15。  相似文献   

2.
利用差示扫描量热分析仪研究了一种快速固化环氧树脂体系的固化工艺参数,确定了以真空辅助树脂灌注工艺制备快速固化环氧树脂/碳纤维复合材料的成型方法,并与常规固化环氧树脂体系制备的碳纤维复合材料进行对比,采用傅里叶变换红外光谱仪对两种材料的树脂基体进行了分析,考察了两种复合材料的纤维含量、孔隙率及力学性能,最后通过扫描电子显微镜观察了快速固化树脂基体与碳纤维的界面结合性。结果表明,快速固化树脂在99℃下固化6 min后固化度可达96%,能够大幅缩减碳纤维复合材料的成型时间,以其制备的碳纤维复合材料拉伸强度比常规固化环氧树脂复合材料高11.20%,弯曲强度高16.92%,纵横剪切强度高7.44%,快速固化树脂与碳纤维界面结合性良好。  相似文献   

3.
应用真空导入成型技术制作大型碳纤维复合材料结构件是大型化风电叶片制造技术的一个重要发展方向。由于碳纤维预成型体的可渗透性远远低于玻纤预成型体,因此具有特殊性能的环氧树脂是这一技术成功的关键。本文系统分析了三种专用环氧树脂体系的适用期、固化行为和力学性能,并与普通玻纤用环氧树脂进行了对比。分析结果表明,三种专用树脂的适用期长短不一,但都大于普通树脂;环氧酸酐体系固化过程中性能建立慢的特点,使其在大型结构件的应用中存在风险;预成型体预热有助于获得高纤维体积含量和力学性能更佳的碳纤维复合材料。  相似文献   

4.
种传广 《安徽化工》2013,39(4):43-45
通过溶液混合和中温固化工艺制备出碳纤维增强环氧树脂/丙烯酰胺复合材料。研究了碳纤维对复合材料力学性能和摩擦学性能的影响,并根据复合材料摩擦表面的SEM图分析了复合材料的摩擦磨损机理。  相似文献   

5.
一种湿法缠绕用中温固化环氧树脂体系   总被引:5,自引:0,他引:5  
对中温固化湿法缠绕成型用树脂体系进行了筛选,加入促进剂后可以在100℃下完全固化,树脂浇铸体力学性能优良,与碳纤维湿法浸渍后,单向复合材料具有良好的力学性能,同时进行了φ150mm容器的湿法缠绕制造,其综合性能达到国内先进水平。  相似文献   

6.
以不同含量的二乙烯三胺(DETA)固化的环氧树脂为基体,制备了碳纤维增强树脂基复合材料。通过扫描电镜和红外光谱分析了T-300型碳纤维表面形貌和基团组成。通过拉伸实验、冲击实验对复合材料的力学性能进行了表征;通过紫外老化实验对复合材料的耐候性进行了表征;通过扫描电镜和热重分析对复合材料的断面形貌和耐热性进行了表征。结果表明:碳纤维增强树脂基复合材料具有良好的耐候性、力学性能、而且还具有质量轻、高比强度等一系列优异的性能。  相似文献   

7.
为了提高复合材料的阻尼性能,促进阻尼复合材料的发展,本文探索一种新的嵌入式共固化穿孔阻尼复合材料。在T300碳纤维布上刷涂阻尼胶浆,晾干后制出规则分布的小孔,按真空导入成型工艺制备预成型体,将其放入温度试验箱进行固化,得到嵌入式共固化穿孔阻尼复合材料,并将复合材料按尺寸切割成试件。对试件进行模态试验、自由衰减试验和层间剪切试验。试件板的一阶模态阻尼达到3.65%,固有频率为12.88 Hz;试件梁的一阶模态阻尼达到2.02%,固有频率为34.25 Hz;试件梁的层间剪切力最大值为6488.452 N,剪切强度为5.19 MPa。结果表明这种嵌入式共固化穿孔阻尼复合材料具有较好的阻尼性能与层间力学性能。  相似文献   

8.
本文详细讨论了乙烯基树脂进行电子束固化的机理,成功地实现了乙烯基树脂为基体的碳纤维复合材料的电子束辐射固化,并比较电子束辅助固化该树脂复合材料的力学性能与相应热固化复合材料的力学性能。  相似文献   

9.
采用超声波扩展法制得薄型单向碳纤维,与自制的中温固化环氧树脂(EP)体系制得预浸料及复合材料,通过电镜分析、示差扫描量分析及凝胶时间、力学性能测试研究了预浸料纤维排布变化、预浸料及其复合材料的性能.结果 表明,预浸料纤维排列均匀、平直、紧密,无损伤.自制EP胶膜具有明显潜伏性和中温快速固化特征.薄型及常规碳纤维预浸料制...  相似文献   

10.
碳纤维复合材料发动机壳体用高性能树脂基体的研制   总被引:2,自引:1,他引:2  
在综合考虑树脂黏度、力学性能、耐热性能的基础上。开发了适用于碳纤维复合材料火箭发动机壳体温法缠绕成型工艺用耐高温和韧性环氧树脂基体。用差示扫描式量热法(DSC)、傅里叶红外光谱FT—IR等分析技术对该韧性树脂基体的固化反应动力学参数、树脂基体固化物的性能和复合材料的性能进行了系统的研究。结果表明,该韧性树脂基体黏度低,适用期长,韧性好,与碳纤维界面粘接强度高,所制得的复合材料火箭发动机壳体纤维强度转化率高。为今后相关方面的研究指明了方向。  相似文献   

11.
耐高温树脂的固化动力学分析及其力学性能   总被引:4,自引:3,他引:1  
本文对一种耐高温环氧树脂体系进行了固化动力学研究,计算出该树脂体系的活化能为70.62kJ/mol、反应级数为0.93,并得到该体系的反应速率常数方程和动力学方程式,确定了树脂体系的固化工艺。还制备了T700碳纤维单向板,并对其力学性能进行测试。结果表明,该树脂体系具有优良的耐热性(树脂固化物的Tg达到218℃)、反应活性高,适用于快速成型固化工艺,其复合材料具有良好的力学性能。  相似文献   

12.
本文研究了乙烯基酯树脂固化工艺,并根据固化工艺制备出不同上浆剂的碳纤维/乙烯基酯树脂复合材料,并对复合材料进行了力学性能和热稳定性能测试,结果表明水性聚氨酯上浆剂碳纤维较水性环氧上浆剂碳纤维制备的碳纤维/乙烯基酯树脂复合材料拉伸强度提升了16%,弯曲强度提高10%,层间剪切强度提高19%,并采用扫描电镜(SEM)分析了两种上浆剂碳纤维制备的碳纤维/乙烯基酯树脂复合材料的层间剪切断面的表面形态,发现聚氨酯上浆剂的碳纤维能够与乙烯基酯树脂有更好的界面结合性能。  相似文献   

13.
用DMTA和DSC扫描了碳纤维/乙烯基酯树脂复合材料在不同温度下的等温固化过程,然后再次用DSC扫描其后固化过程,用DMTA温度谱扫描其后固化前后的样条;制备碳纤维/乙烯基酯树脂复合材料浇注体,测试其力学性能。结果表明,等温固化温度低时固化过程中有相分离现象,后固化能使90℃下等温固化复合材料的层间剪切强度提高55.64%,而对120℃下等温固化复合材料的层间剪切强度作用不大。  相似文献   

14.
郑雪辉 《粘接》2023,(3):98-101
采用热固化方法制备了边坡锚固用碳纤维增强复合材料。研究了电加热固化、传统微波间接加热固化和优化后微波间接加热固化复合材料的力学及热学性能。结果表明,在电加热固化和微波间接加热固化过程的升温过程中没有出现放热峰,说明碳纤维增强复合材料在电加热固化作用下已经发生完全固化。相较于电加热固化工艺,微波间接加热固化在碳纤维增强复合材料完全固化前提下所消耗的能量仅为前者的24.97%,所需要的时间为前者的60%。微波间接加热固化碳纤维增强复合材料的拉伸性能、压缩性能、弯曲性能和层间剪切性能都高于电加热固化试样,层间剪切性能平均值相较于电加热固化提高了49.71%。  相似文献   

15.
采用丙烯酸酯原位聚合物增韧改性多官能环氧树脂,制备了J-241室温固化耐150℃结构胶黏剂。研究了胶黏剂的对金属材料和环氧碳纤维复合材料的粘接性能。制备的胶黏剂具有良好的室温固化性能,固化后室温剪切强度33.2MPa、150℃剪切强度13.6MPa,剥离强度35.2N/cm,对环氧碳纤维复合材料具有良好的粘接性能,可用于环氧碳纤维复合材料结构的修补和二次连接成型。  相似文献   

16.
本文简述了碳纤维增强FMPI树脂基复合材料的制造工艺.研究表明AS4/FMPI复合材料具有较好的力学性能和加工性能,复合材料在371℃、100h的失重率为2.0%,耐热氧化稳定性较好.  相似文献   

17.
《弹性体》2015,(6)
碳纤维表面所固有的疏水性和化学惰性制约了碳纤维复合材料的界面性能。等离子体表面处理技术通过刻蚀、清洁以及引入表面活性基团等作用,较好地解决了碳纤维表面与树脂基体的界面结合,提高了碳纤维复合材料的性能。主要综述了低温等离子体表面处理技术对碳纤维表面物理化学结构以及复合材料力学性能的影响方面的最新研究进展,并对其发展趋势进行了展望。  相似文献   

18.
碳纤维增强环氧树脂基复合材料的性能研究   总被引:1,自引:0,他引:1  
研究了WBS-3环氧树脂固化体系的反应特性,分析了该固化体系浇铸体的性能;并以碳纤维(T-700S)为增强材料,采用手糊成型螺栓加压工艺制备了WBS-3/T-700S复合材料,研究了复合材料的常温力学性能、高温力学性能、水煮后力学性能和动态力学性能,并对弯曲断面进行分析。研究结果表明,WBS-3树脂基体黏度低、适用期长且韧性好,适合于手糊成型、缠绕成型等低成本制造工艺;由此制得的WBS-3/T-700S复合材料具有优良的力学性能和耐高温性能,其弯曲强度为1434MPa,拉伸强度为1972MPa,剪切强度为76.1MPa,玻璃化温度(Tg)超过210℃;该WBS-3/T-700S复合材料具有很好的界面粘接性(树脂对纤维的浸润性良好)、较低的空隙率且纤维分布均匀。  相似文献   

19.
采用国产1k T300级薄型碳纤维织物和中温固化高性能树脂制备预浸料。测试了该预浸料及其复合材料性能,并与国产3k T300级碳纤维织物预浸料及其复合材料性能进行对比。研究结果表明:国产1k T300级薄型碳纤维织物的复合材料性能与国产3k T300级碳纤维织物的复合材料性能相当;该薄型碳纤维织物复合材料的树脂体系是改性增韧环氧树脂,韧性好,适用于轻质夹层结构复合材料,具有较高滚筒剥离强度;同时,该轻质复合材料耐热性好,玻璃化转变温度能达到200℃。  相似文献   

20.
研制一种OOA(非热压罐)成型中温固化环氧树脂芳纶纤维预浸料,对树脂进行流变性能和DSC分析,确定树脂的固化工艺。采用热熔法制备OOA成型芳纶纤维预浸料,通过真空袋法成型复合材料层压板,进行性能测试。结果表明,OOA成型中温固化环氧树脂芳纶纤维预浸料适合真空袋法成型复合材料,层压板孔隙率低,力学性能满足要求,复合材料玻璃化转变温度高,具有较好的耐热性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号