首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A DNA sequence has been obtained for a 35.6-kb genomic segment from Heliobacillus mobilis that contains a major cluster of photosynthesis genes. A total of 30 ORFs were identified, 20 of which encode enzymes for bacteriochlorophyll and carotenoid biosynthesis, reaction-center (RC) apoprotein, and cytochromes for cyclic electron transport. Donor side electron-transfer components to the RC include a putative RC-associated cytochrome c553 and a unique four-large-subunit cytochrome bc complex consisting of Rieske Fe-S protein (encoded by petC), cytochrome b6 (petB), subunit IV (petD), and a diheme cytochrome c (petX). Phylogenetic analysis of various photosynthesis gene products indicates a consistent grouping of oxygenic lineages that are distinct and descendent from anoxygenic lineages. In addition, H. mobilis was placed as the closest relative to cyanobacteria, which form a monophyletic origin to chloroplast-based photosynthetic lineages. The consensus of the photosynthesis gene trees also indicates that purple bacteria are the earliest emerging photosynthetic lineage. Our analysis also indicates that an ancient gene-duplication event giving rise to the paralogous bchI and bchD genes predates the divergence of all photosynthetic groups. In addition, our analysis of gene duplication of the photosystem I and photosystem II core polypeptides supports a "heterologous fusion model" for the origin and evolution of oxygenic photosynthesis.  相似文献   

2.
The organization of the electron transport components in mesophyll and bundle sheath chloroplasts of Zea mays was investigated. Grana-containing mesophyll chloroplasts (chlorophyll a to chlorophyll b ratio of about 3.0) possessed the full complement of the various electron transport components, comparable to chloroplasts from C3 plants. Agranal bundle sheath chloroplasts (Chl a/Chl b greater than 5.0) contained the full complement of photosystem (PS) I and of cytochrome (cyt) f but lacked a major portion of PS II and its associated Chl a/b light-harvesting complex (LHC), and most of the cyt b559. The kinetic analysis of system I photoactivity revealed that the functional photosynthetic unit size of PS I was unchanged and identical in mesophyll and bundle sheath chloroplasts. The results suggest that PS I is contained in stroma-exposed thylakoids and that it does not receive excitation energy from the Chl a/b LHC present in the grana. A stoichiometric parity between PS I and cyt f in mesophyll and bundle sheath chloroplasts indicates that biosynthetic and functional properties of cyt f and P700 are closely coordinated. Thus, it is likely that both cyt f and P700 are located in the membrane of the intergrana thylakoids only. The kinetic analysis of PS II photoactivity revealed the absence of PS II alpha from the bundle sheath chloroplasts and helped identify the small complement of system II in bundle sheath chloroplasts as PS II beta. The distribution of the main electron transport components in grana and stroma thylakoids is presented in a model of the higher plant chloroplast membrane system.  相似文献   

3.
The degree of fluorescence polarization, P, of unoriented and magnetically oriented spinach chloroplasts as a function of excitation (400-680 nm) and emission wavelengths (675-750 nm) is reported. For unoriented chloroplasts P can be divided into two contributions, PIN and PAN. The latter arises from the optical anisotropy of the membranes which is due to the orientation with respect to the membrane plane of pigment molecules in vivo. The intrinsic polarization PIN, which reflects the energy transfer between different pigment molecules and their degree of mutual orientation, can be measured unambiguously only if (1) oriented membranes are used and the fluorescence is viewed along a direction normal to the membrane planes, and (2) the excitation is confined to the Qy (approximately 660-680 nm) absorption band of chlorophyll in vivo. With 670-680 nm excitation, values of P using unoriented chloroplasts can be as high as +14%, mostly reflecting the orientational anisotropy of the pigments. Using oriented chloroplasts PIN is shown to be +5+/-1%. The excitation wavelength dependence studies of PIN indicate that the carotenoid and chlorophyll Qy transition moments tends to be partially oriented with respect to each other on a local level (within a given photosynthetic unit or its immediate neighbors).  相似文献   

4.
Effect of Nd^3+ on Photosynthesis of Spinach   总被引:5,自引:0,他引:5  
The effect of Nd^3 on the photosynthesis and the growth of spinach was studied. The results show that Nd^3 improves the growth of spinach and increases chlorophyll content and photosynthetic rate. UV-Vis spectrum indicates that the Soret band of chl-a in spinach with NdCl3 treatment is blue shifted by 2 nm, and the Q band is red shifted by 1 nm, and the ratio of Soret band intensity and Q band intensity increases. FT-IR spectra show that the peak of porphyrin ring in chl-a of spinach with NdCl3 treatment is widened, suggesting that the formation of Nd^3 -chl-a. Treated by NdCl3, the fluorescence emission peak of PSⅡ in spinach leaves is blue shifted by 12 nm and the intensity declines obviously, indicating that Nd^3 is bound to the PSⅡ protein-pigment complex and the electron transfer rate increases.  相似文献   

5.
The light-induced transient absorbance changes which are affected by valinomycin have been studied using magnetically oriented spinach chloroplasts and a polarized measuring beam. The delta A spectra for the two polarizations parallel and perpendicular to the plane of the photosynthetic membranes have been recorded in the spectral range 630-750 nm. Large polarization effects are found in all the bands of the delta A spectrum, shifts in the position of the extrema are observed and the two features with available data on the dichroism of the Stark effect on monomolecular hypothesis of the electrochromic nature of these absorbance changes in vivo. The data on this electrochromic effect can be correlated with the linear dichorism of oriented chloroplasts and the (see article) spectrum in the 645-655 nm region gives further evidence of the orientation out of the membrane plane of the red transition moment of chlorophyll b.  相似文献   

6.
We have analyzed crystal structures of cytochrome bc1 complexes with electron transfer inhibitors bound to the ubiquinone binding pockets Qi and/or Qo in the cytochrome b subunit. The presence or absence of the Qi inhibitor antimycin A did not affect the binding of the Qo inhibitors. Different subtypes of Qo inhibitors had dramatically different effects on the mobility of the extramembrane domain of the iron-sulfur protein (ISP): Binding of 5-undecyl-6-hydroxy-4, 7-dioxobenzothiazol and stigmatellin (subtype Qo-II and Qo-III, respectively) led to a fixation of the ISP domain on the surface of cytochrome b, whereas binding of myxothiazol and methoxyacrylate-stilbene (subtype Qo-I) favored release of this domain. The native structure has an empty Qo pocket and is intermediate between these extremes. On the basis of these observations we propose a model of quinone oxidation in the bc1 complex, which incorporates fixed and loose states of the ISP as features important for electron transfer and, possibly, also proton transport.  相似文献   

7.
The crystal structure of plastocyanin from the green alga Chlamydomonas reinhardtii has been determined at 1.5-A resolution with a crystallographic R factor of 16.8%. Plastocyanin is a small (98 amino acids), blue copper-binding protein that catalyzes the transfer of electrons in oxygenic photosynthesis from cytochrome f in the quinol oxidase complex to P700+ in photosystem I. Chlamydomonas reinhardtii plastocyanin is an eight-stranded, antiparallel beta-barrel with a single copper atom coordinated in quasitetrahedral geometry by two imidazole nitrogens (from His-37 and His-87), a cysteine sulfur (from Cys-84), and a methionine sulfur (from Met-92). The molecule contains a region of negative charge surrounding Tyr-83 (the putative distant site of electron transfer) and an exclusively hydrophobic region surrounding His-87; these regions are thought to be involved in the recognition of reaction partners for the purpose of directing electron transfer. Chlamydomonas reinhardtii plastocyanin is similar to the other plastocyanins of known structure, particularly the green algal plastocyanins from Enteromorpha prolifera and Scenedesmus obliquus. A potential "through-bond" path of electron transfer has been identified in the protein that involves the side chain of Tyr-83, the main-chain atoms between residues 83 and 84, the side chain of Cys-84, the copper atom, and the side chain of His-87.  相似文献   

8.
Four mutations in the mitochondrial cytochrome b of S. cerevisiae have been characterized with respect to growth capacities, catalytic properties, ATP/2e- ratio, and transmembrane potential. The respiratory-deficient mutant G137E and the three pseudo-wild type revertants E137 + I147F, E137 + C133S, and E137 + N256K were described previously (Tron and Lemesle-Meunier, 1990; Di Rago et al., 1990a). The mutant G137E is unable to grow on respiratory substrates but its electron transfer activity is partly conserved and totally inhibited by antimycin A. The secondary mutations restore the respiratory growth at variable degree, with a phosphorylation efficiency of 12-42% as regards the parental wild type strain, and result in a slight increase in the various electron transfer activities at the level of the whole respiratory chain. The catalytic efficiency for ubiquinol was slightly (G137E) or not affected (E137 + I147F, E137 + C133S, and E137 + N256K) in these mutants. Mutation G137E induces a decrease in the ATP/2e- ratio (50% of the W.T. value) and transmembrane potential (60% of the W.T. value) at the bc1 level, whereas the energetic capacity of the cytochrome oxidase is conserved. Secondary mutations I147F, C133S, and N256K partly restore the ATP/2e- ratio and the transmembrane potential at the bc1 complex level. The results suggest that a partial decoupling of the bc1 complex is induced by the cytochrome b point mutation G137E. In the framework of the protonmotive Q cycle, this decoupling can be explained by the existence of a proton wire connecting centers P and N in the wild type bc1 complex which may be amplified or uncovered by the G137E mutation when the bc1 complex is functioning.  相似文献   

9.
The relationship between the transthylakoid pH-gradient, delta pH, and the velocity of photophosphorylation, Vp, in thylakoid membranes from spinach was investigated using the local anesthetic amine procaine as inhibitor of delta pH. When delta pH was driven by Photosystem (PS) II+I-dependent electron flow, passing through the cytochrome b6/f complex, inhibition by procaine was accompanied by an increase of ATP formation. It appeared that procaine allowed for values of Vp similar to those in controls (without procaine) at a significantly lower delta pH than in the controls. In contrast, when delta pH was driven by cyclic electron flow around PS I or by PS-II+I-dependent electron flow via a bypass around the cytochrome b6/f complex, or by PS II alone, procaine simultaneously caused an inhibition of delta pH and a decrease of ATP formation. Inhibition of delta pH by procaine did not induce an electrical membrane potential gradient that otherwise may have energetically compensated for the observed decline of delta pH. The electron flow capacity was unaffected by procaine. However, inhibition of delta pH did not significantly relax pH-dependent control of electron flux. Procaine accelerated ATP hydrolysis by pre-activated thylakoid ATPase to rates which were observed in the presence of uncouplers and had no direct effect on the activation state of the ATPase. The shift in the relationship between delta pH and Vp towards lower delta pH persisted in thermodynamic equilibrium between the phosphorylation potential and delta pH. The data indicated that the unconventional effect of procaine on photophosphorylation may be related to effects on proton translocation at the cytochrome b6/f complex and that a localized protonic coupling may occur between cytochrome b6/f and thylakoid-ATP-synthase complexes.  相似文献   

10.
Native tubular membranes were purified from the purple non-sulfur bacterium Rhodobacter sphaeroides. These tubular structures contain all the membrane components of the photosynthetic apparatus, in the relative ratio of one cytochrome bc1 complex to two reaction centers, and approximately 24 bacteriochlorophyll molecules per reaction center. Electron micrographs of negative-stained membranes diffract up to 25 A and allow the calculation of a projection map at 20 A. The unit cell (a = 198 A, b = 120 A and gamma = 103 degrees) contains an elongated S-shaped supercomplex presenting a pseudo-2-fold symmetry. Comparison with density maps of isolated reaction center and light-harvesting complexes allowed interpretation of the projection map. Each supercomplex is composed of light-harvesting 1 complexes that take the form of two C-shaped structures of approximately 112 A in external diameter, facing each other on the open side and enclosing the two reaction centers. The remaining positive density is tentatively attributed to one cytochrome bc1 complex. These features shed new light on the association of the reaction center and the light-harvesting complexes. In particular, the organization of the light-harvesting complexes in C-shaped structures ensures an efficient exchange of ubihydroquinone/ubiquinone between the reaction center and the cytochrome bc1 complex.  相似文献   

11.
The photosynthetic light-harvesting complex, peridinin-chlorophyll a-protein, was isolated from several marine dinoflagellates including Glenodinium sp. by Sephadex and ion-exchange chromatography. The carotenoid (peridinin)-chlorophyll a ratio in the complex is estimated to be 4:1. The fluorescence excitation spectrum of the complex indicates that energy absorbed by the carotenoid is transferred to the chlorophyll a molecule with 100% efficiency. Fluorescence lifetime measurements indicate that the energy transfer is much faster than fluorescence emission from chlorophyll a. The four peridinin molecules within the complex appear to form two allowed exciton bands which split the main absorption band of the carotenoid into two circular dichronic bands (with negative ellipticity band at 538 nm and positive band at 463 nm in the case of peridinin-chlorophyl a-protein complex from Glenodinium sp.). The fluorescence polarization of chlorophyll a in the complex at 200 K is about 0.1 in both circular dichroic excitation bands of the carotenoid chromophore. From these circular dichroic and fluorescence polarization data, a possible molecular arrangement of the four peridinin and chlorophyll molecules has been deduced for the complex. The structure of the complex deduced is also consistent with the magnitude of the exciton spliting (ca. greater than 3000 cm-1) at the intermolecular distance in the dimer pair of peridinin (ca. 12 A). This structural feature accounts for the efficient light-harvesting process of dinoflagellates as the exciton interaction lengthens the lifetime of peridinin (radiative) and the complex topology increases the energy transfer probability. The complex is, therefore, a useful molecular model for elucidating the mechanism and efficiency of solar energy conversion in vivo as well as in vitro.  相似文献   

12.
Chlorophyll fluorescence measurements were performed on osmotically lysed potato chloroplasts in order to characterize the reactions involved in the dark reduction of photosynthetic inter-system chain electron carriers. Addition of NADH or NADPH to lysed chloroplasts increased the chlorophyll fluorescence level measured in the presence of a non-actinic light until reaching Fmax, thus indicating an increase in the redox state of the plastoquinone (PQ) pool. The fluorescence increase was more pronounced when the experiment was carried out under anaerobic conditions and was about 50% higher when NADH rather than NADPH was used as an electron donor. The NAD(P)H-PQ oxidoreductase reaction was inhibited by diphenylene iodonium, N-ethylmaleimide and dicoumarol, but insensitive to rotenone, antimycin A and piericidin A. By comparing the substrate specificity and the inhibitor sensitivity of this reaction to the properties of spinach ferredoxin-NADP+-reductase (FNR), we infer that FNR is not involved in the NAD(P)H-PQ oxidoreductase activity and conclude to the participation of rotenone-insensitive NAD(P)H-PQ oxidoreductase. By measuring light-dependent oxygen uptake in the presence of DCMU, methyl viologen and NADH or NADPH as an electron donors, the electron flow rate through the NAD(P)H-PQ oxidoreductase is estimated to about 160 nmol O2 min-1 mg-1 chlorophyll. The nature of this enzyme is discussed in relation to the existence of a thylakoidal NADH dehydrogenase complex encoded by plastidial ndh genes. Copyright 1998 Elsevier Science B.V.  相似文献   

13.
In a previous paper, we observed a two-stage cation-independent association of the light-harvesting chlorophyll a/b protein from spinach chloroplasts based on concentration-dependent changes in the sedimentation coefficient. The two stages of association occurred between (2-4) and (4-7) mug/ml chlorophyll. In this paper, we provide further evidence for this association. This includes: (1) A decrease in the number of divalent cation binding sites in the second stage of association. (2) A corresponding decrease in the extent of the cation-dependent association. (3) A positive deviation from Beer's law for chlorophyll b for both stages of the cation-independent association and a positive deviation for chlorophyll a for the second stage of association only. (4) A change in the fluorescence emission of both chlorophyll a and b. The change for chlorophyll b was observed for both steps of association whereas that for chlorophyll a was observed for the second step of association only. Therefore, the first stage of association affects only chlorophyll b whereas the second stage alters the environment of both chlorophyll a and b. (5) In addition, divalent cations quenched chlorophyll fluorescence. However, the quenching which required 200-300 muM divalent cation for half-maximal effects was related neither to divalent cation binding nor to the divalent cation-induced association of the protein.  相似文献   

14.
Chloroplast material active in photosynthetic electron transport has been isolated from Scenedesmus acutus (strain 270/3a). During homogenization, part of cytochrome 553 was solubilized, and part of it remained firmly bound to the membrane. A direct correlation between membrane cytochrome 553 and electron transport rates could not be found. Sonification removes plastocyanin, but leaves bound cytochrome 553 in the membrane. Photooxidation of the latter is dependent on added plastocyanin. In contrast to higher plant chloroplasts, added soluble cytochrome 553 was photooxidized by 707 nm light without plastocyanin present. Reduced plastocyanin or cytochrome 553 stimulated electron transport by Photosystem I when supplied together or separately. These reactions and cytochrome 553 photooxidation were not sensitive to preincubation of chloroplasts with KCN, indicating that both redox proteins can donate their electrons directly to the Photosystem I reaction center. Scenedesmus cytochrome 553 was about as active as plastocyanin from the same alga, whereas the corresponding protein from the alga Bumilleriopsis was without effect on electron transport rates. It is suggested that besides the reaction sequence cytochrome 553 leads to plastocyanin leads to Photosystem I reaction center, a second pathway cytochrome 553 leads to Photosystem I reaction center may operate additionally.  相似文献   

15.
Bacteriochlorophyll a reaction-center complex I from Chlorobium limicola f. thiosulfatophilum 6230 (Tassajara) was incubated in 2 M guanidine - HCl and then chromatographed on cross-linked dextran or agarose gel. Two principal components were separated: a larger component with photochemical activity (bacteriochlorophyll a reaction-center complex II) and a smaller component without activity (bacteriochlorophyll a protein). Complex II contains carotenoid, bacteriochlorophyll a, reaction center(s), and cytochromes b and c, but lacks the well characterized bacteriochlorophyll a protein contained in Complex I. Complex II carries out a light-induced reduction of cytochrome b along with an oxidation of cytochrome c.  相似文献   

16.
The 1.96 A structure of turnip cytochrome f revealed a linear internal chain of H2O molecules with the oxygen atoms of the chain having occupancies and "B" factors comparable to those of neighboring atoms [Martinez et al. (1996) Protein Sci. 5, 1081-1092. ]. Four waters extend 11 A from the heme toward Lys66 on the cytochrome surface. All residues that contribute an atom to the 15 H-bonds of five internal H2O molecules are essentially conserved in 23 cytochrome sequences. With only Gln and Asn side chains involved in H-bonding, the water chain resembles a "proton wire". The function of the conserved H2O chain was tested through site-directed mutagenesis of these Asn and Gln residues. Four of the five conserved Asn/Gln residues were changed in six mutants generated in the green alga, Chlamydomonas reinhardtii. Except for the N168F mutant, all grew photosynthetically. Although the rates of oxidation of cyt f oxidation and of reduction of cyt b6 (5-6 ms in the wild type) were not significantly affected, the rates of cyt f reduction and generation of the slow electrochromic band shift (Deltapsis) were markedly decreased, the half-times increasing to as much as 38 and 18 ms, respectively. Thus, in these mutants, reduction of cyt b6 reduction clearly precedes that of cyt f. Retardation of Deltapsis in the absence of an observable change in the rate of cyt b6 reduction implied that the rate of H+ translocation decreased in the mutants, and electron transfer was concomitantly retarded, most likely between the ISP and cyt f. The following was concluded: (i) proton and electron transfer are coupled in reduction of cyt f, and the cyt f water chain functions in H+ transfer; (ii) reduction of the high- and low-potential chains in the b6f complex is not concerted in the water chain mutants; and (iii) quinol deprotonation and electron transfer from reduced quinone are initiated by an early event, probably the movement of the ISP triggered by oxidation of cyt f.  相似文献   

17.
The cytochromes c are a useful model for the study of the pathways and mechanisms of assembly of the cofactor-containing components of energy transducing membranes. Genetic analyses have identified proteins that are required for the assembly of c-type cytochromes in mitochondria, bacteria and chloroplasts. The components of the pathway operating in fungal and animal mitochondria, i.e. the cytochrome (cyt) c and c1 heme lyases in the intermembrane space, were identified over a decade ago through the study of cytochrome deficiencies in Neurospora crassa and Saccharomyces cerevisiae. More recently, a large number of membrane or membrane-associated components were identified in various alpha- and gamma-proteobacteria as c-type cytochrome assembly factors; they comprise an assembly pathway that is evolutionarily and mechanistically distinct from that in fungal and animal mitochondria. The components function not only in the lyase reaction but also in the delivery and maintenance of the substrates in a state that is suitable for reaction in the bacterial periplasm. Yet a third pathway is required for cytochrome maturation in chloroplasts. Genetic analyses of Chlamydomonas reinhardtii ccs mutants, which are pleiotropically deficient in both the membrane-anchored cytochrome f and the soluble cytochrome c6, revealed a minimum of six loci, plastid ccsA and nuclear CCS1 through CCS5, that are required for the conversion of the chloroplast apocytochromes to their respective holo forms. Sequence analysis of the cloned ccsA and Ccs1 genes indicates that the predicted protein products are integral membrane proteins with homologues in cyanobacteria, some gram-positive bacteria (Bacillus subtilis, Mycobacterium spp.), beta-proteobacteria (Neisseria spp.) and an epsilon-proteobacterium (Helicobacter pylori). CcsA and Ccs1 require each other for accumulation in vivo and are therefore proposed to function in a complex, possibly with the products of some of the other CCS loci. A tryptophan-rich motif, which has been proposed to represent a heme binding site in bacterial cytochrome biogenesis proteins (CcmC and CcmF), is functionally important in plastid CcsA. As is the case for CcmC and CcmF, the tryptophan-rich sequence is predicted to occur in a loop on the p-side of the membrane, where the heme attachment reaction occurs. Conserved histidine residues in the CcsA and Ccs1 may serve as ligands to the heme iron. A multiple alignment of the tryptophan-rich regions of the CcsA-, CcmC- and CcmF-like sequences in the genome databases indicates that they represent three different families.  相似文献   

18.
The crystal structure of the cytochrome bc1 complex (ubiquinol-cytochrome c reductase) from bovine heart submitochondria was determined at 2.9 A resolution. The bc1 complex in crystal exists as a closely interacting dimer, suggesting that the dimer is a functional unit. Over half of the mass of the complex, including subunits core 1 and core 2, are on the matrix side of the membrane, while most of the cytochrome b subunit is located within the membrane. There are 13 transmembrane helices in each monomer, eight of them belonging to cytochrome b. Two large cavities are made of the transmembrane helices D, C, F and H in one monomer and helices D' and E' from the other monomer of cytochrome b, and the transmembrane helices of c1, iron-sulfur protein (ISP), and subunits 10 and 11. These cavities provide entrances for ubiquinone or inhibitor and connect the Qi pocket of one monomer and the Qo pocket of the other monomer. Ubiquinol made at the Qi site of one monomer can proceed to the nearby Qo site of the other monomer without having to leave the bc1 complex. The soluble parts of cytochrome c1 and ISP, including their redox prosthetic groups, are located on the cytoplasmic side of the membrane. The distances between the four redox centers in the complex have been determined, and the binding sites for several electron transfer inhibitors have been located. Structural analysis of the protein/inhibitor complexes revealed that the extramembrane domain of the Rieske iron-sulfur protein may undergo substantial movement during the catalytic cycle of the complex. The Rieske protein movement and the larger than expected distance between FeS and cytochrome c1 heme suggest that electron transfer reaction between FeS and cytochrome c1 may involve movements or conformational changes in the soluble domain of iron-sulfur protein. The inhibitory function of E-beta-methoxyacrylate-stilbene and myxothiazol may result from the increase of mobility in ISP, whereas the function of stigmatellin and 5-undecyl-6-hydroxy-4,7-dioxobenzothiazole may result from the immobilization of ISP.  相似文献   

19.
Natronobacterium pharaonis, an aerobic haloalkaliphilic archaebacterium, expresses high concentrations of redox proteins as do alkaliphilic eubacteria. The first redox protein characterized from N. pharaonis was halocyanin [Scharf, B., & Engelhard, M. (1993) Biochemistry 32, 12894-12900], a small blue copper protein. It is a peripheral membrane protein and is conjectured to function in a manner similar to plastocyanin. In the present work, the respiratory chain is further elucidated and the purification and characterization of the most abundant components cytochrome bc and cytochrome ba3 from the membrane fraction are described. The cytochrome bc complex consists of a 14 and an 18 kDa subunit in a 1:1 ratio, with heme c bound to the larger polypeptide. An Fe-S subunit similar to that found in eukaryotic bc complexes has not yet been identified. The second membrane complex carries two different heme groups of the ba3-type as well as copper. It contains two subunits of 36 and 40 kDa. This cytochrome ba3 binds carbon monoxide, a feature common to terminal oxidases. There is no spectroscopic evidence for a second terminal oxidase; hence, under the growth conditions chosen the respiratory chain of N. pharaonis appears to be unbranched. In addition to these cytochromes, a succinate dehydrogenase which is solubilized from the membrane by detergents was isolated. A cytochrome c which was isolated from the cytosol has an unusually high molecular weight and a redox potential of -142 mV. A second cytosolic protein, ferredoxin, was purified to homogeneity. A comparison of the redox potentials of the isolated proteins with those obtained from the native membrane allows the construction of a possible electron transfer chain.  相似文献   

20.
The composition and mass of complexes between Chlamydomonas reinhardtii cytochrome b6f and low molecular mass amphipathic polymers ('amphipols') have been studied using biochemical analysis and scanning transmission electron microscopy at liquid helium temperature (cryo-STEM). Cytochrome b6f was trapped by amphipols either under its native 14-meric state or as a delipidated, lighter form. A good consistency was observed between the masses of either form calculated from their biochemical composition and those determined by cryo-STEM. These data show that association with amphipols preserved the original original state of the protein in detergent solution. Complexation with amphipols appears to facilitate preparation of the samples and mass determination by cryo-STEM as compared to conventional solubilization with detergents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号