首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
介绍采用BP,RBF和Elman神经网络计算制冷剂物性参数的方法。以R11,R134a和近共沸混合制冷剂R410A为研究对象,分别建立三种制冷剂的BP,RBF和Elman网络饱和物性参数计算模型。根据该模型由已知温度求各制冷剂在饱和气和饱和液状态下的其他物性参数值,通过与REFPROP软件计算结果进行对比,证明BP,RBF和Elman神经网络物性计算模型具有很高的精度,可以用于物性参数的计算,是一种新的物性计算方法。  相似文献   

2.
基于神经网络模型的动载荷识别   总被引:21,自引:0,他引:21  
依据结构动力学理论推导了在时域中用于神经网络算法的自回归函数,相应建立了具有时延反馈的神经网络动载荷识别模型。阐明了这种网络的基本学习算法和回忆算法。数值仿真和试验件的验证试验表明该神经网络模型用于动载荷识别时具有精度高、无累积误差、抗干扰能力强等优点,并且适用于各种类型的动载荷,尤其对冲击载荷的识别更具有独特的优势。该模型在动标学习过程中要求信息量小,试验成本低,是一种非常值得在工程中推广应用的新型动载荷识别方法。  相似文献   

3.
动载荷识别的时间有限元模型理论及其应用   总被引:6,自引:1,他引:5  
本文利用广义正交多项式作为时间有限元的形函数,推导了基于时间有限元的动载荷识别模型.成功地将时域下动载荷识别的复杂逆卷积关系转变为广义正交域的线性算子逆运算,这种模型识别精度高,抗干扰能力强,具有良好的计算稳定性,尤其适用于具有短时间样本的冲击类型动载荷识别,使该类问题在工程应用时的复杂程度大大降低,具有较高的工程应用价值.该方法为结构动力学逆问题的研究提供了一种新的技术途径.  相似文献   

4.
采用光纤传感测量的直升机旋翼桨叶分布载荷识别   总被引:1,自引:0,他引:1  
针对直升机旋翼载荷识别的传统技术具有测量信/噪比低、不易分布式识别等缺点,基于光纤传感测量技术,建立了一种新的旋翼桨叶分布载荷识别方法.首先建立了基于分布测量应变和模态分析的旋翼桨叶分布载荷识别理论,然后进行了悬停状态下模型旋翼桨叶的光纤传感测量,最后应用建立的识别理论,识别出了模型旋翼桨叶沿径向分布的载荷.  相似文献   

5.
轮胎载荷是车辆设计和安全性评估的基础数据,对轮胎进行高精度的载荷识别具有重要意义。针对轮胎载荷直接测量昂贵、复杂的现状以及基于纯物理驱动与纯数据驱动的载荷识别方法的局限性,提出一种物理-数据联合驱动的载荷识别模型。该模型由卡尔曼滤波器与神经网络修正模型串行组成,卡尔曼滤波器对载荷进行初步识别,修正模型通过卷积神经网络和长短期记忆网络提取信号的空间和时间特征,预测卡尔曼滤波器的偏差并对识别结果予以修正。以APM300胶轮车辆为例进行载荷识别,结果表明,该串行模式载荷识别模型通过将物理驱动与数据驱动方法有机结合,综合整个系统的规则与经验,有效地克制了参数扰动的影响,提升了载荷识别精度,具有较强的泛化性能,具备一定的工程应用价值。  相似文献   

6.
复杂分布动载荷识别技术研究   总被引:17,自引:1,他引:17  
复杂结构的分布动载荷识别技术是动载荷识别技术的难点之一。本文推导了基于广义正交多项式特征技术动载荷识别模型,解决了在一定精度范围内通过有限测量点的振动信息识别具有无限未知量的分布动载荷关键技术,通过动态标定技术的研究和复杂结构有限元模型数值仿真计算,验证了方法的正确性、有效性和工程可用性,适用于具有确定性分布的稳态振动载荷识别.为分布动载荷识别技术的发展打下一定的基础。  相似文献   

7.
复合材料因其优异的性能被广泛应用于飞行器结构(如飞机机翼)中,对作用在复合材料上的载荷进行识别为飞行器的结构设计和可靠性分析提供了重要的保证,在结构的工程应用中具有很高的价值。本工作研究了一种基于光纤布拉格光栅(FBG)传感器和卷积神经网络(CNN)的多点复杂载荷识别方法。在复合材料悬臂梁上布设FBG传感器,利用FBG实际测量得到的应变数据,首先通过支持向量机(SVM)算法对施加载荷的个数进行识别。进一步根据测点排列顺序,再将应变数据转化成矩形图片,经过归一化处理后输入CNN中,实现同时施加多个载荷时载荷的定位和定量,并与反向传播神经网络(BPNN)和梯度提升决策树(GBDT)的预测结果对比。SVM模型识别准确率为99.584%,CNN模型对两点载荷施加位置预测的平均绝对误差(MAE)分别为0.637 9 mm和0.576 2 mm。结果表明,基于SVM和CNN的多点载荷识别方法是一种有效的方法,可以稳定、准确地识别载荷个数、载荷施加的位置和大小,为飞行器飞行载荷测量提供新的解决方案。  相似文献   

8.
结构连续分布的动态随机载荷识别方法研究   总被引:1,自引:0,他引:1  
复杂结构连续分布的动态随机载荷识别技术是结构动载荷识别技术的难点之一。推导了基于广义正交多项式特征技术动态随机载荷识别模型,馋决了在一定精度范围内通过有限测量部位随机振动响应信息识别无限未知量的结构分布动态随机载荷的关键技术,通过动态标定技术的研究和复杂结构有限元模型数值仿真计算验证了方法的正确性、有效性和工程可用性,适用于具有沿结构分布的振动随机载荷识别,为分布动态随机载荷识别技术的发展打下一定的基础。  相似文献   

9.
针对采用支持向量机理论识别飞机机翼盒段上外加载荷位置的光纤Bragg光栅传感器网络,研究了提高位置识别精度的方法;分析了网络中部分传感器失效对位置识别精度的影响,针对故障情况提出了基于模型重构的容错位置识别算法,并对采用容错位置识别算法前后载荷位置识别精度进行了详细的比较.研究结果表明:当网络中某个传感器失效时,通过模型重构容错位置识别算法可有效地实现传感器网络的自修复能力,提高传感器网络的可靠性.  相似文献   

10.
稳像平台速度环的性能直接影响成像质量,本文提出了一种基于Elman网络和PD复合控制的自适应逆控制算法.通过对Elman网络模型和控制对象的分析,设计了独立的指令跟踪回路和干扰抑制回路,并将逆控制和PD复合控制思想应用在干扰抑制回路中,实现了Elman网络在线学习和对被控对象的在线辨识.仿真实验结果表明,该方法能有效克服系统慢时变、干扰等非线性因素的影响,增强系统的鲁棒性.  相似文献   

11.
陈建宏  彭耀  邬书良 《爆破》2015,(1):151-156
针对单一神经网络预测方法存在一些不足,将建立灰色关联分析法与 Elman 神经网络的耦合模型,对爆破飞石最大飞散距离进行预测研究。首先,利用灰色关联分析方法对数据进行预处理,确定各影响因素与爆破飞石距离之间的关联度;然后,根据关联度的大小,选择关联度较大的影响因素作为 Elman 神经网络的输入层数据;最后,用神经网络的功能对数据进行训练和预测。研究结果表明:利用灰色关联分析方法确定主要影响因素作为输入层,比单一使用 Elman 神经网络的预测精度更高,达到95%以上。  相似文献   

12.
刘立生  杨宇航 《振动与冲击》2012,31(17):159-164
主减速器(简称“主减”)是直升机传动系统的关键部件,它常处于高转速高负荷的恶劣环境下,对其运行状态进行预测,于直升机的安全性来说至关重要。鉴于此,提出了一种离散小波变换(DWT)、Kalman滤波以及Elman神经网络相结合的直升机主减智能状态预测系统:DWT使用“db44”母小波对振动信号进行分解提取特征向量,Kalman滤波对未来各时刻的特征向量进行预测,Elman神经网络对预测值进行故障辨识和分类。在Kalman滤波算法中,提出了一种新的预测算法,并用实验对该算法组成的系统进行验证,结果表明:该 Kalman滤波算法预测效果好,更适用于对主减的特征向量进行预测;离散小波变换(DWT)、Kalman滤波以及Elman神经网络相结合组成的智能状态预测系统是可行的,它能很好地对主减的未来状态进行预测。  相似文献   

13.
A modified Elman neural network controller is proposed to control the mover of a permanent magnet linear synchronous motor (PMLSM) servo drive to track periodic reference trajectories. First, the dynamic model of the PMLSM drive system is derived. Next, a modified Elman neural network is proposed to control the PMLSM. Moreover, the connective weights of the modified Elman neural network are trained online by back-propagation (BP) methodology. However, the learning rates of the online-training weights are usually selected by trial-and- error method, which is time-consuming. Therefore an improved particle swarm optimisation (IPSO) is adopted in this study to adapt the learning rates in the BP process of the modified Elman neural network to improve the learning capability. Finally, the control performance of the proposed modified Elman neural network controller with IPSO is verified by the simulated and experimental results.  相似文献   

14.
针对随机噪声下滚动轴承多时期(初期、中期、晚期)故障诊断需求,提出OHF Elman-AdaBoost(output hidden feedback Elman-adaptive boosting)算法,以实现滚动轴承的精确故障诊断。采用集合经验模态分解(ensemble empirical mode decomposition,EEMD)对原始信号进行分解、降噪、信号重构。设计OHF Elman方法在Elman神经网络的基础上增加输出层对隐含层的反馈,提高了其对动态数据的记忆功能。选择OHF Elman神经网络作为弱回归器,结合AdaBoost算法集成出一种新的强回归器:OHF Elman-AdaBoost算法。实验结果表明,该算法不仅对滚动轴承不同故障时期具有很好的诊断效果,而且提高了对全样本数据的诊断准确度,为滚动轴承故障诊断提供了新型工具和有效方案。  相似文献   

15.
针对煤矿掘进机器人履带行驶系统工作环境恶劣,载荷无法直接有效获取这一工程实际问题,提出了基于遗传神经网络的振动信号载荷识别方法。构建了遗传算法(GA)优化BP(back propagation)神经网络载荷识别模型,采用路试法试验采集了履带小车的5组振动加速度数据和单组应力载荷数据,探讨路面不平度频率和驱动轮啮频等对履带车振动和应力载荷的影响规律;借助快速傅里叶变换(FFT)对原始应力载荷数据进行去噪处理,依据履带小车行驶平顺性指标,利用sym8小波函数对振动加速度信号进行5层特征提取以提高载荷识别的精度,然后将5组小波变换分解的加速度数据和滤波后的应力载荷数据分别作为GA-BP神经网络的输入和输出进行训练及验证,揭示了履带行驶系统运动过程中振动与应力载荷之间的关系。研究结果表明,路面不平度频率、驱动轮啮频及转频为小车振动的主要频率成分,路面不平度引起的振动频率为13.765 Hz,驱动轮啮频为68.25 Hz,转频为3.25 Hz。多组试验得到的BP神经网络最佳隐含层神经元数为63,GA-BP神经网络识别的应力载荷与期望应力载荷具有较高吻合度,相对误差为4.5%,验证了该方法的有效性...  相似文献   

16.
基于BP神经网络的桥上移动荷载分阶段识别方法   总被引:1,自引:0,他引:1  
移动荷载识别可作为桥梁损伤机理研究的基础,同时为交通规划提供可靠的车载信息。提出了一种基于BP神经网络的桥上移动荷载的分阶段识别新方法。建立了桥梁有限元模型和2自由度5参数车辆模型,模拟生成了神经网络训练样本。采用分阶段识别技术,分步识别了桥上车辆的位置、速度和荷载。在神经网络设计中,利用正交设计法选择训练样本集,采用正则化方法对误差性能函数进行修正,并采用遗传算法对初始权进行了优化。数值仿真了一简支梁桥的移动车辆荷载识别,并通过模型试验进行了验证。结果表明:所提出的方法能够在线、实时地识别桥上移动车辆荷载,识别精度高、收敛速度快,且具有较强的鲁棒性和抗噪能力。  相似文献   

17.
为提升复杂环境中漂浮式风力机平台筋腱结构隐性损伤识别率,基于卷积神经网络(convolutional neural network,CNN),提出连续多尺度卷积神经网络(continues-multi-scale convolutional neural network,CMS-CNN),建立“端到端”的损伤识别模型。为验证CMS-CNN方法的有效性,以10 MW漂浮式风力机为研究对象,对损伤位置、程度进行故障诊断,结果表明:连续多尺度模型比传统多尺度的诊断结果更佳;横荡加速度受环境载荷影响较小,基于此响应信号所训练的CMS-CNN诊断模型更可靠;CMS-CNN模型可在筋腱结构微弱损伤时实现精准定位,亦能完成结构隐性损伤程度识别。  相似文献   

18.
针对风电机组载荷监测中应变片寿命短的缺陷,基于风电场海量状态监测数据,利用遗传算法和粒子群算法对BP神经网络进行改进,建立塔筒应力预测模型,并通过综合相关系数实现输入参量的有效选择.仿真结果表明,改进后的GA-BP神经网络预测模型和PSO-BP神经网络模型,预测结果的最大、最小相对误差等指标均比BP神经网络预测模型好;...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号