首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The light-driven proton pump bacteriorhodopsin (bR) undergoes a bleaching reaction with hydroxylamine in the dark, which is markedly catalyzed by light. The reaction involves cleavage of the (protonated) Schiff base bond, which links the retinyl chromophore to the protein. The catalytic light effect is currently attributed to the conformational changes associated with the photocycle of all-trans bR, which is responsible for its proton pump mechanism and is initiated by the all-trans --> 13-cis isomerization. This hypothesis is now being tested in a series of experiments, at various temperatures, using three artificial bR molecules in which the essential C13==C14 bond is locked by a rigid ring structure into an all-trans or 13-cis configuration. In all three cases we observe an enhancement of the reaction by light despite the fact that, because of locking of the C13==C14 bond, these molecules do not exhibit a photocycle, or any proton-pump activity. An analysis of the rate parameters excludes the possibility that the light-catalyzed reaction takes place during the approximately 20-ps excited state lifetimes of the locked pigments. It is concluded that the reaction is associated with a relatively long-lived (micros-ms) light-induced conformational change that is not reflected by changes in the optical spectrum of the retinyl chromophore. It is plausible that analogous changes (coupled to those of the photocycle) are also operative in the cases of native bR and visual pigments. These conclusions are discussed in view of the light-induced conformational changes recently detected in native and artificial bR with an atomic force sensor.  相似文献   

2.
Light energy is transferred from retinal to the protein in bacteriorhodopsin after absorption of a photon resulting in changes of protein conformation. To examine whether the covalent bond, formed by the carbonyl group of retinal and the epsilon-amino group of lysine 216, is essential for this process, a mutant with lysine 216 replaced by alanine was expressed in Halobacterium salinarium L33 (BO-, retinal+). Reconstitution of the chromoprotein with varying retinylidene-n-alkylamines was possible in isolated membranes as well as in whole cells. When the protein in membranes with retinylidene Schiff bases of n-alkylamines of different lengths was reconstituted, the most stable chromoprotein was formed with retinylideneethylamine. The absorbance maximum was at 475 nm in alkaline solution and 620 nm in acidic solution. At neutral pH values both species equilibrate with a third one absorbing maximally at 568 nm. Reconstitution of whole cells with retinylideneethylamine led to a specific proton pump activity of 30 mol of protons per mol of BR per minute. This value indicates a lower limit of transport; no light saturation could be reached in these measurements in contrast to wild-type BR where transport activities of 162 mol of protons per mol of BR per minute under identical conditions can be achieved. Action spectra from flash photolysis experiments revealed that only the 568-nm form led to a M-intermediate with a half-time of decay of 17 ms. In summary, it could be shown that the covalent linkage between retinal and the protein is basically not required for the function of bacteriorhodopsin as a light-driven proton pump.  相似文献   

3.
Upon light adaptation by continuous (or pulsed) illumination, the artificial bacteriorhodopsin (bR) pigments, I and II, derived from synthetic 14F retinal and a short polyenal, respectively produce a long-lived red-shifted species denoted O1. An analogous phenomenon was observed by Sonar, S., et al. [(1993) Biochemistry 32, 2263-2271], in the case of the Y185F mutant (pigment III). The nature of these O1 species was investigated by studying a series of effects, primarily their red light photoreversibility, the associated proton uptake and release processes, and the effects of pH on their relative amounts, which are interpreted in terms of pH-dependent acid-base equilibria. Experiments were also carried out with pigments I and II derived from the mutants D96A, E204Q, R82Q, and D85N. The O1 species of pigments I and II (and possibly also that of pigment III) are identified as an unusually long-lived (all-trans) intermediate of the photocycle of their 13-cis isomer. It is concluded that in O1, Asp-85 is protonated, a process associated with proton uptake from the extracellular side. Subsequent proton release (to the same side of the membrane) occurs from Glu-204 (or from a group closely interacting with it) prior to the decay of O1. At high pH (>9), O1 reversibly converts to a purple form, due to deprotonation of Asp-85, while at still higher pH (> 11), a blue-shifted species characterized by a deprotonated Schiff base is generated. These transitions constitute the first demonstration of the titration of a photocycle intermediate of a retinal protein. The respective pKa values are determined and discussed in relation to those pertaining to the unphotolyzed (dark-adapted) pigments. It appears that the pKa values are controlled by a hydrogen bond network involving water molecules, which binds the protonated Schiff base with Asp-85 and Glu-204. The disruption of this network in pigments I-III may also be responsible for the long lifetime of the O1 species, due to the inhibition of thermal trans-13-cis isomerization. The results are relevant to the molecular mechanism of the photocycles of both 13-cis- and all-trans-bR, primarily to the nature and to the deprotonation mechanism of the proton-releasing group.  相似文献   

4.
Bacteriorhodopsin (bR) is the light-driven proton pump found in the purple membrane of Halobacterium salinarium. In this work, structural changes occurring during the bR photocycle in the core structure of bR, which is normally inaccessible to hydrogen/deuterium (H/D) exchange, have been probed. FTIR difference bands due to vibrations of peptide groups in the core region of bR have been assigned by reconstituting and regenerating delipidated bR in the presence of D2O. Exposure of bR to D2O even after long periods causes only a partial shift of the amide II band due to peptide NH --> ND exchange only of peripheral peptide structure. However, the amide II band completely downshifts when reconstitution/regeneration of bR is performed in the presence of D2O, indicating that almost the entire core backbone structure of bR undergoes H/D exchange. Peripheral regions can then be reexchanged in H2O, leaving the core backbone region deuterated. Low-temperature FTIR difference spectra on these core-deuterated samples reveal that peptide groups in the core region respond to retinal isomerization as early as the K intermediate. By formation of the M intermediate, infrared differences in the amide I region are dominated by much larger structural changes occurring in the core structure. In the amide II region, difference bands appear upon K formation and increase upon M formation which are similar to those observed upon the cooling of bacteriorhodopsin. This work shows that retinal isomerization induces conformational changes in the bacteriorhodopsin core structure during the early photocycle which may involve an increase in the strength of intramolecular alpha-helical hydrogen bonds.  相似文献   

5.
The photocycle of bacteriorhodopsin (bR) was studied at ambient temperature in aqueous suspensions of purple membranes using time-resolved resonance Raman (RR) and optical transient spectroscopy (OTS). The samples were photolyzed, and the fractional concentrations of the retinylidene chromophore in its parent state, BR570, and in the intermediate states L550, M412, N560, and O640 were determined in the time domain 20 microseconds-1 s and in the pH range 4-10.5. Two kinetically different L components could be identified. At pH 7 one fraction of L (approximately 65%) decays in 80 microseconds to M (deprotonation of the Schiff base), whereas the residual part is converted in approximately 0.5 ms to N. The RR spectra reveal only minor structural changes of the chromophore in the L-->N transition. These were attributed to a conformational change of the protein backbone [Ormos, P., Chu, K., & Mourant, J. (1992) Biochemistry 31, 6933]. With decreasing pH the L-->N transition is delayed to > 2 ms following a titration-like function with pKa approximately 6.2. The decay of M412 monitored by OTS can be fitted for each pH value by two different amplitudes and time constants (Mf, tau f; Ms, tau s; f = fast, s = slow). Both Mf and Ms consist of subcomponents which can be distinguished by their different reaction pathways (but not by OTS). Mf occurs in the reaction sequences L-->Mf-->N-->BR and L-->Mf-->O-->BR. The population of the first sequence, in which N is formed with the time constant tau f (approximately 2-4 ms, pH 6-10.5), increases with pH. Ms is also found in two different reaction sequences of the form L-->Ms-->BR. The quantitative analysis reveals that each "titration effect" can be related to a certain fraction of bR. It is proposed that each fraction can be identified with a "subspecies" of bR which undergoes an independent and individual cyclic reaction. A complete reaction scheme is set up which represents the manifold of observed phenomena. It is concluded from the pH dependence of the lifetimes of Ms and N that the reconstitution of BR570 in the reaction steps Ms-->BR and N-->BR requires the uptake of a proton from the external phase. It is argued that this proton catalyzes the reisomerization of retinal, whereas the Schiff base is internally reprotonated from Asp-85. A model for proton pumping is proposed in which the proton taken up from the external phase to catalyze the reisomerization of retinal is the one which is pumped through the membrane during the photocycle of bR.  相似文献   

6.
Active translocation of ions across membranes requires alternating access of the ion binding site inside the pump to the two membrane surfaces. Proton translocation by bacteriorhodopsin (bR), the light-driven proton pump in Halobacterium salinarium, involves this kind of a change in the accessibility of the centrally located retinal Schiff base. This key event in bR's photocycle ensures that proton release occurs to the extracellular side and proton uptake from the cytoplasmic side. To study the role of protein conformational changes in this reprotonation switch, spin labels were attached to pairs of engineered cysteine residues in the cytoplasmic interhelical loops of bR. Light-induced changes in the distance between a spin label on the EF interhelical loop and a label on either the AB or the CD interhelical loop were observed, and the changes were monitored following photoactivation with time-resolved electron paramagnetic resonance (EPR) spectroscopy. Both distances increase transiently by about 5 A during the photocycle. This opening occurs between proton release and uptake, and may be the conformational switch that changes the accessibility of the retinal Schiff base to the cytoplasmic surface after proton release to the extracellular side.  相似文献   

7.
We previously have presented evidence for prominent structural changes in helices F and G of bacteriorhodopsin during the photocycle. These changes were determined by carrying out electron diffraction analysis of illuminated two-dimensional crystals of wild-type bacteriorhodopsin or the Asp-96 --> Gly mutant that were trapped at a stage in the photocycle after light-driven proton release, but preceding proton uptake from the aqueous medium. Here, we report structural analysis of the long-lived O intermediate observed in the photocycle of the Leu-93 --> Ala mutant, which accumulates after the release and uptake of protons, but before the reisomerization of retinal to its initial all-trans state. Projection Fourier difference maps show that upon illumination of the Leu-93 --> Ala mutant, significant structural changes occur in the vicinity of helices C, B, and G, and to a lesser extent near helix F. Our results suggest that (i) all four helices that line the proton channel (B, C, F, and G) participate in structural changes during the late stages of the photocycle, and (ii) completion of the photocycle involves significant conformational changes in addition to those that are associated with steps in proton transport.  相似文献   

8.
Molecular dynamics simulations of wild-type bacteriorhodopsin (bR) and of its D85N, D85T, D212N, and Y57F mutants have been carried out to investigate possible differences in the photoproducts of these proteins. For each mutant, a series of 50 molecular dynamics simulations of the photoisomerization and subsequent relaxation process were completed. The photoproducts can be classified into four distinct classes: 1) 13-cis retinal, with the retinal N-H+ bond oriented toward Asp-96; 2) 13-cis retinal, with the N-H+ oriented toward Asp-85 and hydrogen-bonded to a water molecule; 3) 13,14-di-cis retinal; 4) all-trans retinal. Simulations of wild-type bR and of its Y57F mutant resulted mainly in class 1 and class 2 products; simulations of D85N, D85T, and D212N mutants resulted almost entirely in class 1 products. The results support the suggestion that only class 2 products initiate a functional pump cycle. The formation of class 1 products for the D85N, D85T, and D212N mutants can explain the reversal of proton pumping under illumination by blue and yellow light.  相似文献   

9.
Structural intermediates occurring in the photocycle of wild-type bacteriorhodopsin are trapped by illuminating hydrated, glucose-embedded purple membrane at 170 K, 220 K, 230 K, and 240 K. We characterize light-induced changes in protein conformation by electron diffraction difference Fourier maps, and relate these to previous work on photocycle intermediates by infrared (FTIR) spectroscopy. Samples illuminated at 170 K are confirmed by FTIR spectroscopy to be in the L state; a difference Fourier projection map shows no structural change within the 0.35-nm resolution limit of our data. Difference maps obtained with samples illuminated at 220 K, 230 K, and 240 K, respectively, reveal a progressively larger structural response in helix F when the protein is still in the M state, as judged by the FTIR spectra. Consistent with previous structural studies, an adjustment in the position or in the degree of ordering of helix G accompanies this motion. The model of the photocycle emerging from this and previous studies is that bacteriorhodopsin experiences minimal change in protein structure until a proton is transferred from the Schiff base to Asp85. The M intermediate then undergoes a conformational evolution that opens a hydrated "half-channel," allowing the subsequent reprotonation of the Schiff base by Asp96.  相似文献   

10.
The mechanism of the intramolecular proton transfer in the membrane protein bacteriorhodopsin (bR) is studied. The kinetic isotope effects after H/D exchange were determined for the individual photocycle reactions and used as an indicator. Significant differences in the kinetic isotope effects are observed between the intramolecular proton transfer on the release and the uptake pathways. The results suggest a fast intramolecular proton transfer mechanism in the proton release pathway, which is similar to the one proposed for ice, where the rate limiting step is the proton movement within the H bond. However, the reactions in the intramolecular proton uptake pathway occur in a mechanism similar to the one suggested for liquid water, where the rate limiting step is given by a rotational rearrangement of H bonded network groups. We propose that the experimental evidence for a proton wire mechanism given here for bacteriorhodopsin is of general relevance also for other proton transporting proteins.  相似文献   

11.
The thermal re-isomerization of retinal from the 13-cis to the all-trans state is a key step in the final stages of the photocycle of the light-driven proton pump, bacteriorhodopsin. This step is greatly slowed upon replacement of Leu-93, a residue in van der Waals contact with retinal. The most likely role of this key interaction is that it restricts the flexibility of retinal. To test this hypothesis, we have exchanged native retinal in Leu-93 mutants with bridged retinal analogs that render retinal less flexible by restricting free rotation around either the C10-C11 (9,11-bridged retinal) or C12-C13 (11,13-bridged retinal) single bonds. The effect of the analogs on the photocycle was then determined spectroscopically by taking advantage of the previous finding that the decay of the O intermediate in the Leu-93 mutants provides a convenient marker for retinal re-isomerization. Time-resolved spectroscopic studies showed that both retinal analogs resulted in a dramatic acceleration of the photocycling time by increasing the rate of decay of the O intermediate. In particular, exchange of native retinal in the Leu-93 --> Ala mutant with the 9,11-bridged retinal resulted in an acceleration of the decay of the O intermediate to a rate similar to that seen in wild-type bacteriorhodopsin. We conclude that the protein-induced restriction of conformational flexibility in retinal is a key structural requirement for efficient protein-retinal coupling in the bacteriorhodopsin photocycle.  相似文献   

12.
The positions of single amino acids in the interhelical loop regions and the C-terminal tail of bacteriorhodopsin (bR) were investigated by X-ray diffraction using site-directed heavy-atom labeling. Since wild-type bR does not contain any cysteines, appropriate cysteine mutants were produced with a unique sulfhydryl group at specific positions. These sites were then labeled with mercury using the sulfhydryl specific reagent p-chloromercuribenzoate (p-CMB). The cysteine mutants D96A/V101C, V130C, A160C, and G231C were derivatized with labeling stoichiometries of 0.93 +/- 5%, 0.85 +/- 5%, 0.79 +/- 7%, and 0.77 +/- 8%, respectively (Hg per bR). No incorporation was observed with wild-type bR under the same conditions. All mutants and heavy-atom derivatives were fully active as judged by the kinetics of the photocycle and of the proton release and uptake. Moreover, the unit cell dimensions of the two-dimensional P3 lattice were unchanged by the mutations and the derivatization. This allowed the position of the mercury atoms, projected onto the plane of the membrane, to be calculated from the intensity differences in the X-ray diffraction pattern between labeled and unlabeled samples using Fourier difference methods. The X-ray diffraction data were collected at room temperature from oriented purple membrane films at 100% relative humidity without the use of dehydrating solvents. These native conditions of temperature, humidity, and solvent are expected to preserve the structure of the surface-exposed loops. Sharp maxima corresponding to a single mercury atom were found in the difference density maps for D96A/V101C and V130C. Residues 101 and 130 are in the short loops connecting helices C/D and D/E, respectively. No localized difference density was found for A160C and G231C. Residue 160 is in the longer loop connecting helices E and F, whereas residue 231 is in the C-terminal tail. Residues 160 and 231 are apparently in a more disordered and mobile part of the structure.  相似文献   

13.
Crystallographic data reveal that Met-118 in bacteriorhodopsin (bR) contacts directly with the C9 methyl group of retinal, and Khorana et al. [J. Biol. Chem. 268, 20305-20311 (1993)] suggest that this contact may regulate the absorption maximum (lambdamax). We have replaced the amino acid (Val-108) corresponding to Met-118 of bR by methionine in pharaonis phoborhodopsin (ppR), whose lambdamax is ca. 500 nm, while those of other bacterial rhodopsins such as bR, halorhodopsin, and sensory rhodopsin are red-shifted by 60-90 nm. By flash-photolysis measurement, we could not recognize a large spectral red-shift of the V108M mutant. On the other hand, the decay of ppRM (M-intermediate) of the mutant was approximately three times as fast as that of wild-type, and an M-like intermediate (M') whose lambdamax is blue-shifted by 60 nm from that of M became appreciable. The replacement abolished the shoulder of the ppRM spectrum. From these findings, we infer that the distance between the retinal and the 108-position in ppR is relatively long, and that in the M-state this distance is shortened.  相似文献   

14.
In the recently proposed local-access model for proton transfers in the bacteriorhodopsin transport cycle (Brown et al. 1998. Biochemistry. 37:3982-3993), connection between the retinal Schiff base and Asp85 (in the extracellular direction) and Asp96 (in the cytoplasmic direction)is maintained as long as the retinal is in its photoisomerized state. The directionality of the proton translocation is determined by influences in the protein that make Asp85 a proton acceptor and, subsequently, Asp96 a proton donor. The idea of concurrent local access of the Schiff base in the two directions is now put to a test in the photocycle of the D115N/D96N mutant. The kinetics had suggested that there is a single sequence of intermediates, L<-->M1<-->M2<-->N, and the M2-->M1 reaction depends on whether a proton is released to the extracellular surface. This is now confirmed. We find that at pH 5, where proton release does not occur, but not at higher pH, the photostationary state created by illumination with yellow light contains not only the M1 and M2 states, but also the L and the N intermediates. Because the L and M1 states decay rapidly, they can be present only if they are in equilibrium with later intermediates of the photocycle. Perturbation of this mixture with a blue flash caused depletion of the M intermediate, followed by its partial recovery at the expense of the L state. The change in the amplitude of the C=O stretch band at 1759 cm-1 demonstrated protonation of Asp85 in this process. Thus, during the reequilibration the Schiff base lost its proton to Asp85. Because the N state, also present in the mixture, arises by protonation of the Schiff base from the cytoplasmic surface, these results fulfill the expectation that under the conditions tested the extracellular access of the Schiff base would not be lost at the time when there is access in the cytoplasmic direction. Instead, the connectivity of the Schiff base flickers rapidly (with the time constant of the M1<-->M2 equilibration) between the two directions during the entire L-to-N segment of the photocycle.  相似文献   

15.
In the bacteriorhodopsin photocycle the transported proton crosses the major part of the hydrophobic barrier during the M to N reaction; in this step the Schiff base near the middle of the protein is reprotonated from D96 located near the cytoplasmic surface. In the recombinant D212N protein at pH > 6, the Schiff base remains protonated throughout the photocycle [Needleman, Chang, Ni, Váró, Fornés, White, & Lanyi (1991) J. Biol. Chem. 266, 11478-11484]. Time-resolved difference spectra in the visible and infrared are described by the kinetic scheme BR-->K<==>L<==>N (-->N')-->BR. As evidenced by the large negative 1742-cm-1 band of the COOH group of the carboxylic acid, deprotonation of D96 in the N state takes place in spite of the absence of the unprotonated Schiff base acceptor group of the M intermediate. Instead of internal proton transfer to the Schiff base, the proton is released to the bulk, and can be detected with the indicator dye pyranine during the accumulation of N'. The D212N/D96N protein has a similar photocycle, but no proton is released. As in wild-type, deprotonation of D96 in the N state is accompanied by a protein backbone conformational change indicated by characteristic amide I and II bands. In D212N the residue D96 can thus deprotonate independent of the Schiff base, but perhaps dependent on the detected protein conformational change. This could occur through increased charge interaction between D96 and R227 and/or increased hydration near D96. We suggest that the proton transfer from D96 to the Schiff base in the wild-type photocycle is driven also by such a decrease in the pKa of D96.  相似文献   

16.
The pH dependence of the L-to-M transition in the photocycle of bacteriorhodopsin was studied in pump-probe resonance Raman (RR) flow experiments in the range pH 3.5-7.8 on a time scale of 0-700 micros. For pH < 5, following the initial decay of L to M, the two intermediates approach nearly constant levels. From a specially designed perturbation-relaxation experiment at pH 4.6, in which the composition of L and M is perturbed by photoreversal of M, it could be concluded that the incomplete decay of L is due to an intermediate equilibration between L and M. It was found, by both RR and optical transient spectroscopy, that the maximum level of M (approximately 500 micros) increases with pH according to a pKa of 5. 6 (150 mM Na+). Since the proton release from an internal group XH to the extracellular surface is determined by nearly the same pKa of 5.7 [Zimanyi, L., Varo, G., Chang, M., Ni, B., Needleman, R., and Lanyi, J. K. (1992) Biochemistry 31, 8535-8543], it is concluded that this increase is controlled by the dissociation of XH. From the analysis of the perturbation-relaxation experiments and the multiexponential rise of M, a kinetic scheme with two sequential L-M equilibria is proposed for the L-M transition. By comparison with the time behavior of proton release [Heberle, J., and Dencher, N. A. (1992) Proc. Natl. Acad. Sci. U.S.A. 89, 5996-6000], it is suggested that it is the second equilibrium which is further shifted toward the M state by the dissociation of XH. From the magnitude of this shift, it is concluded that the L-M transition and proton release are not as strongly coupled as is generally assumed. Instead, it is proposed that structural changes during the photocycle are the dominating factors which reduce the pKa of XH to approximately 5.7 so that proton release becomes possible under normal conditions.  相似文献   

17.
15N solid-state NMR (SSNMR) spectra of guanidyl-15N-labeled bacteriorhodopsin (bR) show perturbation of an arginine residue upon deprotonation of the retinal Schiff base during the photocycle. At the epsilon position, an upfield shift of 4 ppm is observed while the eta nitrogens develop a pair of 'wing' peaks separated by 24 ppm. Proton-driven spin diffusion between the two 'wing' peaks indicates that they arise from a single Arg residue. An unusually asymmetric environment for this residue is indicated by comparison with guanidyl-15N chemical shifts in a series of arginine model compounds. The 'wing' peaks are tentatively assigned to Arg-82 on the basis of the SSNMR investigations of the alkaline and neutral dark-adapted forms of the D85N bacteriorhodopsin mutant. Another, less asymmetric pair of eta signals, that is not affected by Schiff base deprotonation or D85 mutation, is tentatively assigned to Arg-134. The results are discussed in relation to existing models of bR structure and function.  相似文献   

18.
The chromophore of photoactive yellow protein (PYP) (i.e., 4-hydroxycinnamic acid) has been replaced by an analogue with a triple bond, rather than a double bond (by using 4-hydroxyphenylpropiolic acid in the reconstitution, yielding hybrid I) and by a "locked" chromophore (through reconstitution with 7-hydroxycoumarin-3-carboxylic acid, in which a covalent bridge is present across the vinyl bond, resulting in hybrid II). These hybrids absorb maximally at 464 and 443 nm, respectively, which indicates that in both hybrids the deprotonated chromophore does fit into the chromophore-binding pocket. Because the triple bond cannot undergo cis/trans (or E/Z) photoisomerization and because of the presence of the lock across the vinyl double bond in hybrid II, it was predicted that these two hybrids would not be able to photocycle. Surprisingly, both are able. We have demonstrated this ability by making use of transient absorption, low-temperature absorption, and Fourier-transform infrared (FTIR) spectroscopy. Both hybrids, upon photoexcitation, display authentic photocycle signals in terms of a red-shifted intermediate; hybrid I, in addition, goes through a blue-shifted-like intermediate state, with very slow kinetics. We interpret these results as further evidence that rotation of the carbonyl group of the thioester-linked chromophore of PYP, proposed in a previous FTIR study and visualized in recent time-resolved x-ray diffraction experiments, is of critical importance for photoactivation of PYP.  相似文献   

19.
We have examined light-induced currents in oriented membranes of the bacteriorhodopsin mutants R82K and R82Q. Our results suggest that two photocurrent components found in R82K, with 30 and 300 microseconds lifetimes, are due to the photocycle of the 13-cis rather than the all-trans form of the pigment. We investigated the pH dependence of these components and their correspondence to absorbance changes at 660 nm characteristic of photointermediates of the 13-cis cycle. The presence of a D2O effect suggests that the charge motions producing these photocurrents are related to proton or protonated amino acid movement within the molecule. The current amplitudes depend on the protonation states of at least two residues, D85 and (probably) E204. In R82Q, a 10 microseconds photocurrent is observed that also depends on the protonation state of D85 and is similar to the 30 microseconds current in R82K. We attempt to explain these currents in terms of a model for interacting residues in the extracellular half of the bacteriorhodopsin channel.  相似文献   

20.
Photocurrents from purple membrane suspensions of D85N BR mutant adsorbed to planar lipid membranes (BLM) were recorded under yellow (lambda > 515 nm), blue (360 nm < lambda < 420 nm) and white (lambda > 360 nm) light. The pH dependence of the transient and stationary currents was studied in the range from 4.5 to 10.5. The outwardly directed stationary currents in yellow and blue light indicate the presence of a proton pumping activity, dependent on the pH of the sample, in the same direction as in the wild-type. The inwardly directed currents in white light, due to an inverse proton translocation, in a two-photon process, show a pH dependence as well. The stationary currents in blue and white light are drastically increased in the presence of azide, but not in yellow light. The concentration dependence of the currents on azide indicates binding of azide to the protein. In the presence of 1 M sodium chloride, the stationary proton currents in yellow light show an increase by a factor of 25 at pH 5.5. On addition of 50 mM azide, the stationary current in yellow light decreases again, possibly by competition between azide and chloride for a common binding site. The observed transport modes are discussed in the framework of the recently published IST model for ion translocation by retinal proteins [U. Haupts et al., Biochemistry 36 (1997) 2-7].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号