首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
在实际应用中,容易获取大量的未标记样本数据,而样本数据是有限的,因此,半监督分类算法成为研究者关注的热点.文中在协同训练Tri-Training算法的基础上,提出了采用两个不同的训练分类器的Simple-Tri-Training方法和对标记数据进行编辑的Edit-Tri-Training方法,给出了这三种分类方法与监督分类SVM的分类实验结果的比较和分析.实验表明,无标记数据的引入,在一定程度上提高了分类的性能;初始训练集和分类器的选取以及标记过程中数据编辑技术,都是影响半监督分类稳定性和性能的关键点.  相似文献   

2.
张雁  吕丹桔  吴保国 《微机发展》2013,(7):77-79,83
在实际应用中,容易获取大量的未标记样本数据,而样本数据是有限的,因此,半监督分类算法成为研究者关注的热点。文中在协同训练Tri-Training算法的基础上,提出了采用两个不同的训练分类器的Simple-Tri-Training方法和对标记数据进行编辑的Edit-Tri-Training方法,给出了这三种分类方法与监督分类SVM的分类实验结果的比较和分析。实验表明,无标记数据的引入,在一定程度上提高了分类的性能;初始训练集和分类器的选取以及标记过程中数据编辑技术,都是影响半监督分类稳定性和性能的关键点。  相似文献   

3.
借鉴半监督分类的思想,本文提出一种基于改进EM算法的贝叶斯分类模型,对移动通信网络中存在的大量随机缺失的非平衡数据进行分类。首先,从实际数据中经过初步统计分析得到能在一定程度上反应变量状态的先验概率,并以此作为贝叶斯分类模型的初始值进行EM迭代训练,从而减少EM算法的迭代次数并改善EM算法对初始值的敏感性以及局部收敛的缺陷;然后,利用对历史移动通信数据进行训练得到的叶斯网络分类模型,对测试数据进行预测分类。实验结果表明,该方法大大提高了移动通信数据中负类样本的预测成功率,与传统的数理统计分析方法相比较,表现出了更好的性能。  相似文献   

4.
基于自适应数据剪辑策略的Tri-training算法   总被引:1,自引:0,他引:1  
邓超  郭茂祖 《计算机学报》2007,30(8):1213-1226
Tri-training能有效利用无标记样例提高泛化能力.针对Tri-training迭代中无标记样例常被错误标记而形成训练集噪声,导致性能不稳定的缺点,文中提出ADE-Tri-training(Tri-training with Adaptive Data Editing)新算法.它不仅利用RemoveOnly剪辑操作对每次迭代可能产生的误标记样例识别并移除,更重要的是采用自适应策略来确定RemoveOnly触发与抑制的恰当时机.文中证明,PAC理论下自适应策略中一系列判别充分条件可同时确保新训练集规模迭代增大和新假设分类错误率迭代降低更多.UCI数据集上实验结果表明:ADE-Tri-training具有更好的分类泛化性能和健壮性.  相似文献   

5.
一种基于限制的PAM算法   总被引:2,自引:1,他引:2  
利用数据对象间的关联限制可以改善聚类算法的效果,但对于关联限制与K中心点算法的结合策略则少有研究。由此研究了关联限制与PAM算法的结合方法,提出了算法CPAM。首先基于限制找到一个合适的初始分隔;在接下来反复地调整中心点的过程中,也考虑到了所给限制。实验结果显示:CPAM可以有效地利用关联限制来提高一些实际数据集的准确率。  相似文献   

6.
为了获得充足的训练语料,提出了半监督的K-means算法(SSK-means),算法的运行过程中不再随机选择初始中心点,而是先从各类标注数据分别选取一个作为初始中心点,其余的则从未标注数据中选择,选择距离已选初始点较远的数据,这就保证初始点不会属于同一类,从而使得标注的结果具有较高的准确率.实验结果表明,SSK-means算法是有效的,它具有较好的性能.  相似文献   

7.
张雁  吴保国  吕丹桔  林英 《计算机工程》2014,(6):215-218,229
半监督学习和主动学习都是利用未标记数据,在少量标记数据代价下同时提高监督学习识别性能的有效方法。为此,结合主动学习方法与半监督学习的Tri-training算法,提出一种新的分类算法,通过熵优先采样算法选择主动学习的样本。针对UCI数据集和遥感数据,在不同标记训练样本比例下进行实验,结果表明,该算法在标记样本数较少的情况下能取得较好的效果。将主动学习与Tri-training算法相结合,是提高分类性能和泛化性的有效途径。  相似文献   

8.
沈海龙  盛晓辉 《计算机应用研究》2023,40(4):1019-1023+1051
为了减少对有标记数据的依赖,充分利用大量无标记数据,提出了一个基于数据增强和相似伪标签的半监督文本分类算法(semi-supervised text classification algorithm with data augmentation and similar pseudo-labels, STAP)。该算法利用EPiDA(easy plug-in data augmentation)框架和自训练对少量有标记数据进行扩充,采用一致性训练和相似伪标签考虑无标记数据及其增强样本之间的关系和高置信度的相似无标记数据之间的关系,在有监督交叉熵损失、无监督一致性损失和无监督配对损失的约束下,提高无标记数据的质量。在四个文本分类数据集上进行实验,与其他经典的文本分类算法相比,STAP算法有明显的改进效果。  相似文献   

9.
演化数据的学习   总被引:1,自引:0,他引:1  
在一些实际问题中,数据的分布随时间的变化而逐渐变化,这类数据的学习问题被称之为演化数据的学习.文中综述了演化数据上的学习方面的研究进展.提出了今后需要关注的一些问题,如数据演化的机制、一般性的假设问题、演化数据分类等等.  相似文献   

10.
为了实现对变电站损耗中可降低比例的识别,本文提出了一种基于数据挖掘和半监督学习的变电站能效模型,并使用该模型对使用电能力采集系统所收集的海量变电站电力数据进行聚类处理和机器学习实现对变电站可降低损耗比例的识别.该模型首先使用K均值聚类算法对变电站的电能供需特征进行建模,随后基于一种半监督的机器学习以优化变电站损耗模型,...  相似文献   

11.
基于Tri-Training和数据剪辑的半监督聚类算法   总被引:2,自引:1,他引:2  
邓超  郭茂祖 《软件学报》2008,19(3):663-673
提出一种半监督聚类算法,该算法在用seeds集初始化聚类中心前,利用半监督分类方法Tri-training的迭代训练过程对无标记数据进行标记,并加入seeds集以扩大规模;同时,在Tri-training训练过程中结合基于最近邻规则的Depuration数据剪辑技术对seeds集扩大过程中产生的误标记噪声数据进行修正、净化,以提高seeds集质量.实验结果表明,所提出的基于Tri-training和数据剪辑的DE-Tri-training半监督聚类新算法能够有效改善seeds集对聚类中心的初始化效果,提高聚类性能.  相似文献   

12.
Tri-Training算法是半监督算法的一种,在学习过程中容易错误标注无标记样本,从而降低分类性能,为此提出一种ADP-Tri-Training(Adaptive Tri-Training)算法,改进协同工作方式,根据几何中心设置分类器组成,然后应用模糊数学理论将多个独立的分类器组合,使得算法可以在多因素下综合评价样本,并在此基础上引入遗传算法动态设置组合权重以适应于具体的样本集,从而尽可能降低样本标注的错误率,多个实验结果表明ADP-Tri-Training算法具有更好的分类性能.  相似文献   

13.
事件关系分类是一项研究事件之间存在何种逻辑关系的自然语言处理技术。针对事件关系分类任务中训练语料不足的问题,提出了基于Tri-Training的事件关系分类方法。该方法首先根据已标注的语料训练三个不同的分类器,以多数投票的方式从未标注集中抽取置信度较高的样本对训练集进行扩充,然后利用新的训练集重新训练分类器,反复迭代,不断完善分类模型,最终达到提升事件关系分类性能的目的。实验结果表明,以F1值为评价标准,基于Tri-Training的事件关系分类方法在四大类事件关系上的分类性能为64.36%。  相似文献   

14.
一种半监督K均值多关系数据聚类算法   总被引:3,自引:1,他引:3  
提出了一种半监督K均值多关系数据聚类算法.该算法在K均值聚类算法的基础上扩展了其初始类簇的选择方法和对象相似性度量方法,以用于多关系数据的半监督学习.为了获取高性能,该算法在聚类过程中充分利用了标记数据、对象属性及各种关系信息.多关系数据库Movie上的实验结果验证了该算法的有效性.  相似文献   

15.
半监督学习过程中,由于无标记样本的随机选择造成分类器性能降低及不稳定性的情况经常发生;同时,面对仅包含少量有标记样本的高维数据的分类问题,传统的半监督学习算法效果不是很理想.为了解决这些问题,本文从探索数据样本空间和特征空间两个角度出发,提出一种结合随机子空间技术和集成技术的安全半监督学习算法(A safe semi-supervised learning algorithm combining stochastic subspace technology and ensemble technology,S3LSE),处理仅包含极少量有标记样本的高维数据分类问题.首先,S3LSE采用随机子空间技术将高维数据集分解为B个特征子集,并根据样本间的隐含信息对每个特征子集优化,形成B个最优特征子集;接着,将每个最优特征子集抽样形成G个样本子集,在每个样本子集中使用安全的样本标记方法扩充有标记样本,生成G个分类器,并对G个分类器进行集成;然后,对B个最优特征子集生成的B个集成分类器再次进行集成,实现高维数据的分类.最后,使用高维数据集模拟半监督学习过程进行实验,实验结果表明S3LSE具有较好的性能.  相似文献   

16.
吕佳  黎隽男 《计算机应用》2018,38(1):110-115
针对自训练方法在迭代中选出的置信度高的无标记样本所含信息量不大和自训练方法容易误标记无标记样本的问题,提出了一种结合半监督聚类和数据剪辑的Naive Bayes自训练方法。该自训练方法在每次迭代的时候,首先利用少量的有标记样本和大量的无标记样本进行半监督聚类,从而选出聚类隶属度高的无标记样本作Naive Bayes分类;然后利用数据剪辑技术来过滤掉聚类隶属度高而被Naive Bayes误分类的无标记样本。该数据剪辑技术能够同时利用有标记样本和无标记样本信息进行噪声过滤,解决了传统数据剪辑技术的性能可能因有标记样本数量匮乏而下降的问题。通过在UCI数据集上的对比实验,证明了所提算法的有效性。  相似文献   

17.
当前已有的数据流分类模型都需要大量已标记样本来进行训练,但在实际应用中,对大量样本标记的成本相对较高。针对此问题,提出了一种基于半监督学习的数据流混合集成分类算法SMEClass,选用混合模式来组织基础分类器,用K个决策树分类器投票表决为未标记数据添加标记,以提高数据类标的置信度,增强集成分类器的准确度,同时加入一个贝叶斯分类器来有效减少标记过程中产生的噪音数据。实验结果显示,SMEClass算法与最新基于半监督学习的集成分类算法相比,其准确率有所提高,在运行时间和抗噪能力方面有明显优势。  相似文献   

18.
互联网技术不断发展,新浪微博作为公开的网络社交平台拥有庞大的活跃用户. 然而由于用户数量庞大,且个人信息并不一定真实,造成训练样本打标困难. 本文采用了一种多视图tri-training的方法,构建三个不同的视图,利用这些视图中少量已打标样本和未打标样本不断重复互相训练三个不同的分类器,最后集成这三个分类器实现用户性别判断. 本文用真实用户数据进行实验,发现和单一视图分类器相比,使用多视图tri-training学习训练后的分类器准确性更好,且需要打标的样本更少.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号