首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gastrointestinal myoelectric activity was investigated in conscious rabbits with chronically implanted electrodes. As rabbit stomach is never empty, food was removed 1 h before the beginning of recordings. Propagated activity fronts spontaneously started in the jejunum without associated changes in the antroduodenal area. Intravenous administration of either motilin (600-1500 ng/kg) or erythromycin (5-50 micrograms/kg) did not modify antral activity, but simultaneously increased duodenal and jejunal activity in a dose-dependent manner. Spontaneous and induced jejunal activity fronts showed some similarities. However, those induced did not propagate and were not followed by a quiescence period. The effects of motilin (900 ng/kg) and erythromycin (25 micrograms/kg) were resistant to atropine (0.5 mg/kg), hexamethonium (2 mg/kg), or ondansetron (0.5 mg/kg). These results suggest that motilin is not a physiological modulator of the migrating myoelectric complex (MMC) in rabbits. Moreover, neither cholinergic nor 5-HT3 receptors are involved in either motilin or erythromycin-induced actions.  相似文献   

2.
1. The behavioural effects of the 5-HT1B receptor agonists, RU 24969 and CGS 12066B, have been investigated in C57/B1/6 mice. 2. RU 24969 (1-30 mg kg-1) produced intense and prolonged hyperlocomotion and other behavioural changes. 3. CGS 12066B caused similar effects, but they were much less pronounced, inconsistent and transient irrespective of whether this drug was given i.p. (1-15 mg kg-1) or i.c.v. (0.2-40 micrograms). However, CGS 12066B (7.5 and 15 mg kg-1) caused a dose-related inhibition of RU 24969 (7.5 mg kg-1)-induced hyperlocomotion indicating that the former is a 5-HT1B partial agonist. 4. RU 24969 (7.5 mg kg-1 i.p.)-induced hyperlocomotion was inhibited by the (-)-, but not (+)-isomers of pindolol (4 mg kg-1) and propranolol (20 mg kg-1) but not by metoprolol (10 mg kg-1) or ICI 118,551 (5 mg kg-1), consistent with an involvement of 5-HT1A or 5-HT1B receptors. 5. The response was not altered by the selective 5-HT1A receptor antagonist, WAY 100135 (5 mg kg-1, s.c.), the 5-HT2A/5-HT2C receptor antagonist, ritanserin (0.1 mg kg-1), the selective 5-HT3 receptor antagonist, ondansetron (1 mg kg-1) or the non-selective 5-HT receptor antagonists methysergide (3 mg kg-1) and metergoline (3 mg kg-1). 6. Although spiroxatrine (0.1 mg kg-1) and ketanserin (1 mg kg-1) inhibited RU 24969-induced hyperlocomotion, these effects were probably due to antagonism of dopamine D2 receptors and alpha 1-adrenoceptors respectively. 7. Taken together, these results indicate that RU 24969-induced hyperlocomotion results specifically from activation of central 5-HTIB receptors.8. Lesioning of 5-HT neurones with 5,7-dihydroxytryptamine (75 microg, i.c.v.) or depletion with pchlorophenylalanine(200 mg kg-1, i.p. for 14 days) had no effect on RU 24969-induced hyperlocomotiondemonstrating that the 5-HTIB receptors involved are postsynaptic and that they do not show super sensitivity.9. The involvement of other monoamine neurotransmitter systems in RU 24969-induced hyperlocomotionwas also examined. The response was inhibited by the al-adrenoceptor antagonist, prazosin(1 mg kg-1), the dopamine DI receptor antagonist, SCH 23390 (0.05 mg kg-1) and the dopamine D2 receptor antagonist, BRL 34778 (0.03 mg kg-1), but not by the M2-adrenoceptor antagonist, idazoxan(1 mg kg-1). Lesioning noradrenergic neurones with N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine(100 mg kg-1) markedly attenuated this behaviour. These results show that the hyperlocomotion is expressed via noradrenergic and dopaminergic neurones acting on alpha 1-adrenoceptors, DI and D2 receptors.10. RU 24969 decreased brain concentrations of 5-hydroxyindoleacetic acid whilst simultaneously increasing 5-HT, consistent with the reduction of 5-HT neuronal activity by activation of 5-HTlA and 5-HTIB autoreceptors. RU 24969 increased brain 3-methoxy-4-hydroxyphenylglycol, but not noradrenaline, concentrations which supports the involvement of noradrenergic neurones in the expression of hyperlocomotion. RU 24969 did not alter dopamine, dihydroxyphenylacetic acid or homovanillic acid concentrations in the nucleus accumbens suggesting that the dopaminergic neurones terminating there are not directly involved.  相似文献   

3.
1. Selective 5-hydroxytryptamine (5-HT; serotonin) reuptake inhibitors (SSRIs) cause a greater increase in extracellular 5-HT in the forebrain when the somatodendritic 5-HT1A autoreceptor is blocked. Here, we investigated whether blockade of the terminal 5-HT1B autoreceptor influences a selective 5-HT reuptake inhibitor in the same way, and whether there is an additional effect of blocking both the 5-HT1A and 5-HT1B autoreceptors. 2. Extracellular 5-HT was measured in frontal cortex of the anaesthetized rat by use of brain microdialysis. In vivo extracellular recordings of 5-HT neuronal activity in the dorsal raphe nucleus (DRN) were also carried out. 3. The selective 5-HT reuptake inhibitor, paroxetine (0.8 mg kg-1, i.v.), increased extracellular 5-HT about 2 fold in rats pretreated with the 5-HT1A receptor antagonist, WAY100635. When administered alone neither paroxetine (0.8 mg kg-1, i.v.) nor WAY100635 (0.1 mg kg-1, i.v.) altered extracellular 5-HT levels. 4. Paroxetine (0.8 mg kg-1, i.v.) did not increase 5-HT in rats pretreated with the 5-HT1B/D receptor antagonist, GR127935 (1 mg kg-1, i.v.). GR127935 (1 and 5 mg kg-1, i.v.) had no effect on extracellular 5-HT when administered alone. 5. Interestingly, paroxetine (0.8 mg kg-1, i.v.) caused the greatest increase in 5-HT (up to 5 fold) when GR127935 (1 or 5 mg kg-1, i.v.) was administered in combination with WAY100635 (0.1 mg kg-1, i.v.). Administration of GR127935 (5 mg kg-1, i.v.) plus WAY100635 (0.1 mg kg-1, i.v.) without paroxetine, had no effect on extracellular 5-HT in the frontal cortex. 6. Despite the lack of effect of GR127935 on 5-HT under basal conditions, when 5-HT output was elevated about 3 fold (by adding 1 microM paroxetine to the perfusion medium), the drug caused a dose-related (1 and 5 mg kg-1, i.v.) increase in 5-HT. 7. By itself, GR127935 slightly but significantly decreased 5-HT cell firing in the DRN at higher doses (2.0-5.0 mg kg-1, i.v.), but did not prevent the inhibition of 5-HT cell firing induced by paroxetine. 8. In summary, our results suggest that selective 5-HT reuptake inhibitors may cause a large increase in 5-HT in the frontal cortex when 5-HT autoreceptors on both the somatodendrites (5-HT1A) and nerve terminals (5-HT1B) are blocked. This increase is greater than when either set of autoreceptors are blocked separately. The failure of a 5-HT1B receptor antagonist alone to enhance the effect of the selective 5-HT reuptake inhibitor in our experiments may be related to a lack of tone on the terminal 5-HT1B autoreceptor due to a continued inhibition of 5-HT cell firing. These results are discussed in relation to the use of 5-HT autoreceptor antagonists to augment the antidepressant effect of selective 5-HT reuptake inhibitors.  相似文献   

4.
The effects of the administration of different 5-HT4 receptor antagonists (SDZ 205557, GR 125487) and 5-HT4 receptor agonists (BIMU 1, BIMU 8) on memory processes were evaluated in the mouse passive avoidance test. The administration of SDZ 205557 (10 mg kg-1 i.p.) and GR 125487 (10 mg kg-1 i.p.) immediately after termination of the training session produced an amnesic effect. BIMU 1 (20 mg kg-1 i.p.) and BIMU 8 (30 mg kg-1 i.p.), administered 20 min before the training session, prevented the 5-HT4 receptor antagonist-induced amnesia. In the same experimental conditions BIMU 1 (10 mg kg-1 i.p.; 25 microgram/mouse intracerebroventricularly) and BIMU 8 (30 mg kg-1 i.p.; 30 microgram per mouse intracerebroventricularly) prevented scopolamine (1 mg kg-1 i.p.) and dicyclomine (2 mg kg-1 i.p.) amnesia and, at the dose of 10 and 30 mg kg-1 i.p. respectively, prevented amnesia induced by exposure to a hypoxic environment. At the highest effective doses, none of the drugs impaired motor coordination, as revealed by the rota rod test, or modified spontaneous motility and inspection activity, as revealed by the hole board and Animex tests. The 5-HT3 antagonist ondansetron (0.1-1 mg kg-1 i.p.) was unable to prevent scopolamine-, 5-HT4 antagonist- and hypoxia-induced amnesia. These results suggest that the modulation of 5-HT4 receptors plays an important role in the regulation of memory processes. On these bases, the 5-HT4 receptor agonists could be useful in the treatment of cognitive deficits although 5-HT4 receptor antagonists may represent pharmacological tools for investigation of new potential antiamnesic drugs.  相似文献   

5.
The 5-HT1A and the 5-HT2A/C receptor agonists 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) (0.006-0.4 mg kg-1 s.c.) and (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) (0.05-4.0 mg kg-1 s.c.), respectively, produced a similar stereotyped forward locomotion in rats, although the intensity of the behavioral change was considerably less with DOI. The stereotyped forward locomotion was accompanied by a slight decrease in total activity, suppression of rearing behavior and an increased activity in the periphery of the open-field arena. In support of receptor specificity, the effects of 8-OH-DPAT and DOI could be antagonised by pretreatment with the 5-HT1A/B and the 5-HT2A/C receptor antagonists (-)-pindolol (2 mg kg-1 s.c.) and ritanserin (2 mg kg-1 s.c.), respectively. In addition, (-)-pindolol, but not the selective beta-adrenoceptor antagonist betaxolol, markedly enhanced the behavioral effects produced by DOI. The nature of these specific actions and interactions in terms of pre- and post-synaptic serotonergic mechanisms remains an important question.  相似文献   

6.
1. The effects of risperidone on brain 5-hydroxytryptamine (5-HT) neuronal functions were investigated and compared with other antipsychotic drugs and selective receptor antagonists by use of single cell recording and microdialysis in the dorsal raphe nucleus (DRN). 2. Administration of risperidone (25-400 micrograms kg-1, i.v.) dose-dependently decreased 5-HT cell firing in the DRN, similar to the antipsychotic drug clozapine (0.25-4.0 mg kg-1, i.v.), the putative antipsychotic drug amperozide (0.5-8.0 mg kg-1, i.v.) and the selective alpha 1-adrenoceptor antagonist prazosin (50-400 micrograms kg-1, i.v.). 3. The selective alpha 2-adrenoceptor antagonist idazoxan (10-80 micrograms kg-1, i.v.), in contrast, increased the firing rate of 5-HT neurones in the DRN, whereas the D2 and 5-HT2A receptor antagonists raclopride (25-200 micrograms kg-1, i.v.) and MDL 100,907 (50-400 micrograms kg-1, i.v.), respectively, were without effect. Thus, the alpha 1-adrenoceptor antagonistic action of the antipsychotic drugs might, at least partly, cause the decrease in DRN 5-HT cell firing. 4. Pretreatment with the selective 5-HT1A receptor antagonist WAY 100,635 (5.0 micrograms kg-1, i.v.), a drug previously shown to antagonize effectively the inhibition of 5-HT cells induced by risperidone, failed to prevent the prazosin-induced decrease in 5-HT cell firing. This finding argues against the notion that alpha 1-adrenoceptor antagonism is the sole mechanism underlying the inhibitory effect of risperidone on the DRN cells. 5. The inhibitory effect of risperidone on 5-HT cell firing in the DRN was significantly attenuated in rats pretreated with the 5-HT depletor PCPA (p-chlorophenylalanine; 300 mg kg-1, i.p., day-1 for 3 consecutive days) in comparison with drug naive animals. 6. Administration of risperidone (2.0 mg kg-1, s.c.) significantly enhanced 5-HT output in the DRN. 7. Consequently, the reduction in 5-HT cell firing by risperidone appears to be related to increased availability of 5-HT in the somatodendritic region of the neurones leading to an enhanced 5-HT1A autoreceptor activation and, in turn, to inhibition of firing, and is probably only to a minor extent caused by its alpha 1-adrenoceptor antagonistic action.  相似文献   

7.
1. The receptor mediating the long-lasting hypotensive effect of intravenous (i.v.) 5-hydroxytryptamine (5-HT) in the rat was originally classified as 5-HT1-like. Since some pharmacological properties of this receptor are closely similar to those for the cloned 5-ht7 receptor, the present study investigated the effects of several 5-HT receptor agonists and antagonists showing high affinity for the cloned 5-ht7 receptor in pithed rats with artificially raised blood pressure. 2. I.v. bolus administration of 5-HT, 5-carboxamidotryptamine (5-CT), 5-methoxytryptamine, lisuride and sumatriptan to bilaterally vagotomized pithed rats pretreated with ketanserin (0.18 mumol kg-1, i.v.), the diastolic blood pressure of which had been raised by a continuous i.v. infusion of methoxamine (60-80 nmol kg-1 min-1), produced dose-dependent hypotensive responses; only 5-HT and 5-CT displayed similar maximum effects. In addition to mimicking the hypotensive action of 5-HT with a lower maximum effect, lisuride strongly antagonized the 5-CT-induced hypotensive responses thus suggesting a partial agonist effect. The rank order of hypotensive agonist potency was 5-CT > > 5-HT > or = 5-methoxytryptamine > or = lisuride > > sumatriptan. 3. In experiments with antagonists, i.v. treatment with metergoline (2.48 mumol kg-1), mesulergine (2.76 mumol kg-1), methysergide (2.13 mumol kg-1), lisuride (0.22 mumol kg-1), methiothepin (0.68 mumol kg-1), mianserin (10.6 mumol kg-1), or the atypical antipsychotic drugs, clozapine (11.0 mumol kg-1) or risperidone (78.0 nmol kg-1), produced significant rightward displacements of the dose-response curve for 5-CT in methoxamine-infused pithed animals pretreated with ketanserin (0.18 mumol kg-1, i.v.); lisuride, methiothepin and risperidone behaved as non-competitive antagonists as they elicited a significant reduction of the maximum effect to 5-CT. In contrast, blockade of 5-HT1, 5-HT3 and 5-HT4 receptors with i.v. propranolol (3.38 mumol kg-1), MDL-72222 (1.59 mumol kg-1) and GR125487 (1.91 mumol kg-1), respectively, did not alter 5-CT-induced hypotensive responses; ketanserin (0.18 mumol kg-1, i.v.) failed to modify the dose-response curve for 5-CT in saline-pretreated animals. Lastly, inhibition of the prostaglandin-forming cyclo-oxygenase and nitric oxide synthase with indomethacin (14 mumol kg-1, i.v.) and NG-nitro-L-arginine methyl ester (L-NAME, 120 mumol kg-1, i.v.), respectively, had no significant effects on 5-CT-induced hypotensive effects. 4. Taken together, the present pharmacological data suggest that the long-lasting vasodepressor action of 5-HT in the rat involves activation of receptors closely similar to the cloned 5-ht7 subtype. Since no evidence for an indirect mechanism could be obtained, these receptors may be primarily located in the vascular smooth muscle of the systemic resistance vessels. These findings represent further evidence favouring the functional role of the 5-ht7 receptor.  相似文献   

8.
1. Erythromycin administration is associated with gastrointestinal problems, disturbed gastrointestinal motility and emesis. This study in the dog investigates the underlying mechanisms. 2. Intestinal myoelectrical activity and the occurrence and latency of emesis were recorded in eight conscious dogs. All drugs were administered intravenously. 3. Erythromycin (7 mg kg-1) increased contractions of the proximal small intestine, and caused emesis in all fasted dogs and in 5 dogs after food. Atropine (50 mg kg-1 min-1) and hexamethonium (10 mg kg-1 h-1) partially inhibited the GI motility effects but did not significantly reduce emesis. 4. Metoclopramide at a high dose (2 mg kg-1 h-1) reduced the incidence of emesis in the presence of increased intestinal motility, but a low dose (150 micrograms kg-1 h-1) was ineffective. 5. A 5-hydroxytryptamine3 (5-HT3) receptor antagonist, MDL 72222 (1 mg kg-1), reduced emesis when given alone and combined with metoclopramide (low dose). The 5-HT4 receptor agonist BRL24924 (Renzapride, 1 mg kg-1) had no effect on emesis either alone in combination with metoclopramide. 6. In conclusion, erythromycin-induced GI motility disturbances and emesis are not causally related. Whereas the increase in intestinal smooth muscle activity is possibly cholinergically mediated, emesis occurs at least in part via a 5-hydroxytryptaminergic mechanism, but does not involve the dopamine system.  相似文献   

9.
Nitric oxide (NO) is a major candidate in vagal-induced LOS relaxation. Vagal adrenergic fibres also innervate the gastrointestinal tract including the LOS. This study investigates the role of these two and other mechanisms in LOS responses to vagal activation in the rat, and provides functional and anatomical evidence for a smooth muscle LOS in this species. LOS, gastric and oesophageal pressures were measured in urethane anaesthetized rats during vagal stimulation. The LOS pressure (LOSP) response to Vagal stimulation (5 mA, 10 Hz, 0.5 msec pulses, 5 sec) comprised three consecutive stages: (1) brief reduction of LOSP, (2) transient increase of LOSP and (3) prolonged reduction of LOSP. The influences of additive treatment with several antagonist drugs on the LOS response to vagal stimulation were investigated. L-NAME (100 mg kg-1) reduced stage 1 and increased stage 2. Subsequent treatment with either phentolamine (1 mg kg-1) or prazosin (200 micrograms kg-1) abolished stage 1. After phentolamine, atropine treatment (400 micrograms kg-1) abolished stage 2. Stage 3 was evident throughout experiments. In five additional studies, treatment with hexamethonium (30 mg kg-1) abolished stages 2 and 3 leaving stage 1, which was later abolished by phentolamine or atropine. In the LOS response to vagal stimulation, the following major mechanisms are therefore evident: nicotinic transmission in both excitation and inhibition, alpha-adrenergic and NO-mediated inhibition, muscarinic excitation, and non-adrenergic, non-NO inhibition (not characterized further). Characteristics of these different neurotransmitter influences may be important in LOS relaxation associated with swallowing and gastro-oesophageal reflux.  相似文献   

10.
The mode of interaction between muramyl dipeptide (MDP), a compound with immunopharmacological activities, and 5-hydroxtryptamine (5-HT, serotonin) was studied in isolated nerve-smooth muscle preparations of the carp stomach. Application of exogenous 5-HT evoked direct smooth muscle contractions; electric neurogenic stimulation evoked twitches due to release of 5-HT from nerve endings. Contractions evoked by a high concentration of 5-HT (3-30 microM) were resistant to atropine and potentiated in the presence of MDP. Isamoltan (5-HTID antagonist) decreased the amplitude of contractions, whereas ketanserin (5-HT2 antagonist) and MDL 72,222 (5-HT3 antagonist) had no effect. The addition of low concentrations (0.1-1.5 microM) of 5-HT did not contract the preparation but caused a decrease in the amplitude of neurogenic twitches, which might be due to the presynaptic inhibition of serotonin release. This effect of 5-HT was not changed by isamoltan or ketanserin, but it was largely reduced in the presence of 5-HT3 antagonists tropisetron and MDL 72,222. This inhibitory effect of 5-HT on twitch amplitude was potentiated by MDP. The interaction of MDP with the serotonergic system thus involved not only potentiation of the postsynaptic effect of higher 5-HT concentrations, which might have been mediated via the 5-HT1 subsystem, but also presynaptic inhibition. MDP enhancement of 5-HT's inhibitory effect, mediated via 5-HT3 receptors, might represent a new feature in mutual 5-HT-MDP interactions.  相似文献   

11.
The purpose of this study was to examine the effects of 5-HT4-receptor agonists cisapride, mosapride citrate (mosapride), and zacopride on action potentials (APs) in guinea pig isolated papillary muscles. Cisapride (0.1-3 microM) concentration-relatedly prolonged the duration of APs (APD) without affecting the other AP parameters. Mosapride and its main metabolite M1 (des-4-fluoro-benzyl-mosapride) did not affect APs at 10 microM. Zacopride at 10 microM shortened APD, and the APD-shortening effect was not affect by GR113808 (10 microM), a 5-HT4-receptor antagonist. The cisapride (1 microM)-induced prolongation of APD was not affected by GR113808 (10 microM), ritanserin (10 microM), a 5-HT2A/2C-receptor antagonist, or prazosin (10 microM), an alpha 1-receptor antagonist. The same concentrations of GR113808, ritanserin, and prazosin did not affect APD. Clofilium, a class III antiarrhythmic agent, prolonged APD; the effect was more pronounced at a stimulus frequency of 0.3 Hz than at 2.0 Hz. Cisapride did not exert such reverse use dependence, suggesting that its mechanism of action is different from that of clofilium. These results suggest that cisapride prolongs APD without involvement of 5-HT2, 5-HT4, or alpha 1 receptors. Mosapride is unlikely to induce the prolongation of electrocardiographic QT intervals correlated with the prolongation of APD in isolated ventricular muscles.  相似文献   

12.
1. 5-Hydroxytryptamine (5-HT) exerts both contractile and relaxant effects in the marmoset isolated aorta, actions that are unaffected by the 5-HT2 antagonist ketanserin. The aim of the present study was to define the receptors mediating the contractile activity of 5-HT in the marmoset aorta. 2. Contractile responses were elicited in aortic rings that were either: (i) precontracted submaximally with the thromboxane A2 agonist U44069 in order to amplify the responses; or (ii) exposed to N(omega)-nitro-L-arginine (100 micromol/L) plus LY 53857 (0.1 micromol/L; a 5-HT2 receptor antagonist shown previously to inhibit relaxation). The effect of 5-HT on adenosine 3',5'-cyclic monophosphate (cAMP) formation was also investigated. 3. The effects of agonists and antagonists comprised: (i) agonist potencies in the order 5-carboxamidotryptamine > 5-HT > sumatriptan > 8-hydroxy-2-(di-n-propylamino)tetralin; (ii) inhibition of contractile action of 5-HT by the 5-HT1D antagonist GR 127935; (iii) a contractile response to methysergide; (iv) a lack of effect of tropisetron, an antagonist of 5-HT3 and 5-HT4 receptors; and (v) inhibition of forskolin-stimulated cAMP formation by 5-HT (in the presence of LY 53857), indicative of negative coupling to adenylate cyclase. 4. The above effects fulfill the criteria for a 5-HT1-like receptor. In view of the previous finding that this contractile response is insensitive to ketanserin, it is concluded that the contractile effects of 5-HT in the marmoset aorta are mediated exclusively by a 5-HT1-like receptor.  相似文献   

13.
The 5-Hydroxytryptamine (5-HT)2C receptor (originally known as the 5-HT1C receptor) is a member of the 5-HT2 subfamily of G protein coupled receptors, which is known to couple to phospholipase C. Within the 5-HT2 subfamily, only the 5-HT2C receptor also coupled to inhibition of forskolin-stimulated cAMP production when expressed at high density (12 pmol/mg membrane protein) in stably transformed AV12 cells. The 5-HT2C receptor coupled with high efficacy to both phospholipase C as measured by IP3 (inositol 1,4,5-trisphosphate) production and to inhibition of forskolin-stimulated cAMP production (EC50 = 2.98 nM +/- 0.9 and IC50 = 47.99 nM +/- 10.25 respectively). The 5-HT2A and 5-HT2B receptors, while coupling to phospholipase C with high affinity (EC50s of 19.24 nM +/- 6.44 and 1.24 nM +/- 0.136 respectively), did not decrease adenylyl cyclase activity. The 5-HT2C receptor actions in both systems showed the expected pharmacology for the 5-HT2C receptor, e.g., mesulergine antagonized the effects of 5-HT and spiperone did not. Preincubation of cells with PTX showed that the G protein coupling of the 5-HT2C receptor to phospholipase C is PTX insensitive, while the G protein coupling to inhibition of adenylyl cyclase is PTX sensitive, even to concentrations as low as 20 ng/ml of PTX. PTX pretreatment of the 5-HT2C bearing cells also unmasked a small stimulatory effect on adenylyl cyclase. When expressed at low density the 5-HT2C receptor potentiated forskolin-stimulated cAMP production by 2 fold while still maintaining its ability to enhance PI hydrolysis. A more modest potentiation of cAMP production was noted with low density expression of the 5-HT2B receptor. Thus the ability of the 5-HT2C receptor to interact with several effectors through at least two different G proteins is, in part, receptor subtype specific but also influenced by receptor density.  相似文献   

14.
Serotonin (5-hydroxytryptamine; 5-HT) elicits external carotid vasoconstriction in vagosympathectomized dogs via 5-HT1B/1D receptors and a mechanism unrelated to the 5-HT1, 5-HT2, 5-HT3 and 5-HT4 types. In order to further explore the nature of this novel mechanism, the canine external carotid effects of 2-(2-aminoethyl)-quinoline (D-1997), a novel 5-HT1 receptor agonist, were analyzed and compared with those of 5-HT and sumatriptan. Intracarotid (i.c.) infusions of 5-HT, D-1997 and sumatriptan to vagosympathectomized dogs dose-dependently decreased external carotid conductance, the rank order of agonist potency being 5-HT > sumatriptan > D-1997. The effects to D-1997 were resistant to intravenous (i.v.) pretreatment with 5-HT2 and 5-HT3/5-HT4 receptor antagonists. Remarkably, the effects induced by lower (10-100 microg/min), but not higher (300-1000 microg/min), doses of D-1997 were blocked by high doses of methiothepin (1 and 3 mg/kg, i.v.), as previously shown with 5-HT. In addition, GR-127935 (1-10 microg/kg, i.v.), partially and dose-dependently antagonized D-1997-induced responses. However, the effects of D-1997 remained unaltered after blockade of alpha- and beta-adrenoceptors, muscarinic, nicotinic, histamine and dopamine receptors, or inhibition of 5-HT-uptake or cyclo-oxygenase, depletion of biogenic amines or blockade of Ca2+ channels. These results may support our previous contention that lower doses of 5-HT elicit external carotid vasoconstriction in vagosympathectomized dogs by activation of 5-HT1B/1D receptors, whilst higher doses of 5-HT stimulate a novel vasoconstrictor mechanism.  相似文献   

15.
The depolarization of adult and neonatal rat facial and spinal motoneurones by 5-hydroxytryptamine (5-HT) in part involves an enhancement of the hyperpolarization-activated, inward-rectifier, IH. Under experimental conditions which promote this action, 5-HT evokes an inward current which can be mimicked by intracellularly applied adenosine 3',5'-cyclic monophosphate (cAMP) and potentiated by the cAMP-specific phosphodiesterase inhibitor Ro 20-1724. In this study, we show that this action of 5-HT can be blocked by the adenylyl cyclase inhibitors 2'3'-dideoxyadenosine (2',3'-DDA). 5'-adenylimidodiphosphate (AMP-PNP) and SQ-22536 (9-(tetrahydro-2-furyl)adenine), but not by external or internal application of the protein kinase inhibitors H-7, staurosporine and chelerythrine. The most recently cloned 5-HT receptor subtypes, 5-HT4, 5-HT6 and 5-HT7, can all stimulate adenylyl cyclase when activated. In the presence of internal GTP-gamma-S, 5-HT irreversibly enhanced IH. The 5-HT-induced inward current could be reversibly blocked by methysergide, but not by the 5-HT4 receptor antagonist GR-113808A, the 5-HT6 and 5-HT7 antagonist clozapine and the 5-HT1A antagonist WAY-100365. 5-Methoxytryptamine (5-MeOT) and 5-carboxamidotryptamine (5-CT) mimicked the action of 5-HT with a rank order of potency of 5-HT = 5MeOT > 5-CT. Surprisingly, 8-hydroxy-2-(di-N-propylamino)-tetralin (8-OH DPAT), a 5-HT1A and 5-HT7 agonist was inactive on facial motoneurones unlike its reported agonist action on spinal motoneurones. It is proposed that cAMP produced by 5-HT-mediated stimulation of adenylyl cyclase acts in a phosphorylation-independent manner, possibly directly, on the IH channel. The 5-HT receptor subtype mediating this response cannot be correlated with any of the classified 5-HT receptor subtypes that stimulate adenylyl cyclase.  相似文献   

16.
Isradipine and darodipine are dihydropyridine calcium antagonists that affect the serotonergic pathways with a peculiar profile of effects because, at low dose (0.08 and 0.3 mg/kg, respectively) they facilitate, but at high dose (1.60 and 5.0 mg/kg, respectively) they inhibit the serotonergic neurotransmission. To investigate the mechanisms of these effects, the selective 5-HT1A receptor agonist 8-OHDPAT was injected S.C. to rats pretreated I.P. with isradipine (0.04-1.60 mg/kg) or darodipine (0.3-5.0 mg/kg). By stimulating presynaptic 5-HT1A autoreceptor, 8-OHDPAT induced signs of inhibition of the serotonergic neutransmission (i.e., decrease of the 5-HIIA/5-HT ratio), but it also produced behavioral effects by stimulating postsynaptic 5-HT1A receptors (i.e., forepaw treadings). A low dose of isradipine (0.08 mg/kg) or darodipine (0.3 mg/kg) antagonized the presynaptic, but enhanced the postsynaptic effects of 8-OHDPAT, suggesting relief of the autoreceptor-mediated inhibition of the 5-HT release. Thus, the amine released could stimulate postsynaptic receptors, adding its action to that of 8-OHDPAT. A high dose of isradipine (1.60 mg/kg) or darodipine (5.0 mg/kg) left unchanged, or also enhanced, the signs of inhibition of serotonergic neurotransmission displayed by 8-OHDPAT, reducing but not suppressing the increase in the behavioral response to the stimulation of postsynaptic 5-HT1A receptors. It was speculated that the effects of isradipine and darodipine on scrotonergic pathways of rat brain could be due to changes in the back-regulation of the neurotransmission, mediated by 5-HT1A autoreceptors. This mechanism of action could be extended to other dihydropyridine calcium antagonists, because blockade of L-type VSCC by these compounds appears to be involved in their effects on brain 5-HT turnover.  相似文献   

17.
To test the role of 5-HT1A receptors in the action of antidepressants, we investigated the effect of chronic paroxetine (10 mg/kg, p.o. for 21 days) on functional assays of 5-HT1A sensitivity. We constructed cumulative concentration response curves to the selective 5-HT1A agonist (+)-8-OH-DPAT on both extracellular recordings of 5-HT neurones and electrically stimulated 5-HT release in dorsal raphe brain slices. Chronic paroxetine desensitized the 5-HT1A receptors controlling firing, with an increase in EC50 from 10.7 nM to 46.2 nM 8-OH-DPAT. Chronic paroxetine did not, however, desensitize the 5-HT1A receptors controlling 5-HT release but increased the 8-OH-DPAT Emax from 54.9% to 79.2% inhibition of 5-HT release. These data suggest that there are either two distinct populations of 5-HT1A receptors or separate second messenger systems, one controlling 5-HT release and another influencing firing. Furthermore chronic paroxetine treatment can differentially modulate these different populations.  相似文献   

18.
The pharmacological properties of a novel selective 5-hydroxytryptamine1A (5-HT1A) receptor antagonist, NAD-299 [(R)-3-N,N-dicyclobutylamino-8-fluoro-3,4-dihydro-2H-1-benzopyran-5-carboxamide hydrogen (2R,3R)-tartrate monohydrate] were examined in vitro and in vivo and compared with the reference 5-HT1A receptor antagonist, WAY-100635 [N-(2-(1-(4-(2-methoxyphenyl)piperazin-yl))ethyl)-N-(2-pyridinyl) cyclohexanecarboxamide trihydrochloride]. The new compound had high affinity for 5-HT1A receptors in vitro with a Ki value of 0.6 nM. The only other receptors for which NAD-299 had affinity less than 1 microM were alpha-1 and beta adrenoceptors with Ki values of 260 and 340 nM, respectively. Thus, the selectivity of NAD-299 for 5-HT1A receptors was more than 400 times. WAY-100635 had considerably higher affinity than NAD-299 for alpha-1 adrenoceptors (Ki = 45 nM) and dopamine D2 and D3 receptors (Ki = 79 and 67 nM, respectively). Like WAY-100635, NAD-299 competitively blocked 5-HT-induced inhibition of vasoactive intestinal peptide-stimulated cAMP production in GH4ZD10 cells and had no intrinsic activity. Both compounds were therefore 5-HT1A receptor antagonists in vitro and also behaved as such in in vivo experiments. Thus, they competitively antagonized the 8-hydroxy-2-(di-n-propylamino)tetralin-induced 5-HT behavioral effects, hypothermia, corticosterone secretion and inhibition of passive avoidance behavior without causing any actions of their own. The effective dose of NAD-299 varied between 0.03 and 0.35 micromol/kg s.c., depending on the test and the dose of 8-hydroxy-2-(di-n-propylamino)tetralin.  相似文献   

19.
A series of 1-?omega-(4-aryl-1-piperazinyl)alkyl]indolin-2(1H)-one derivatives 2-14 was synthesized in order to obtain ligands with a dual 5-HT1A/5-HT2A activity. The majority of those compounds (2-5, 7, 10-13) exhibited a high 5-HT1A (Ki = 2-44 nM) and/or 5-HT2A affinity (Ki = 51 and 39 for 5 and 7, respectively). Induction of lower lip retraction (LLR) and behavioral syndrome and inhibition of these effects evoked by 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) were used for determination the agonistic and antagonistic activity, respectively, at 5-HT1A receptors. The 5-HT2A antagonistic activity was assessed by the blocking effect on the head twitches induced by (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) in mice. Two of the tested compounds, 1-?3-[4-(3-chlorophenyl)-1-piperazinyl]propyl?-6-fluoroindolin-2(1 H)-one (5) and 1-?3-[4-(2-methoxyphenyl)-1-piperazinyl]propyl?indolin-2(1H)-one (7), demonstrated a high 5-HT1A/5-HT2A affinity and an in vivo antagonistic activity towards both receptor subtypes.  相似文献   

20.
A new series of arylpiperazide derivatives of 1-naphthylpiperazine of general formula 4 has been prepared and evaluated as 5-HT1B antagonists. Binding experiments at cloned human 5-HT1A, 5-HT1B, and 5-HT1D receptors show that these derivatives are potent and selective ligands for 5-HT1B/1D subtypes with increased binding selectivity versus the 5-HT1A receptor when compared to 1-naphthylpiperazine (1-NP). Studies of inhibition of the forskolin-stimulated cAMP formation mediated by the human 5-HT1B receptor demonstrate that the nature of the arylpiperazide substituent modulates the intrinsic activity of these 1-NP derivatives. Among them, 2-[[8-(4-methylpiperazin-1-yl)naphthalen-2-yl]oxy] -1-(4-o-tolylpiperazin-1-yl)ethanone (4a) was identified as a potent neutral 5-HT1B antagonist able to antagonize the inhibition of 5-HT release induced by 5-CT (5-carbamoyltryptamine) in guinea pig hypothalamus slices. Moreover, 4a was found to potently antagonize the hypothermia induced by a selective 5-HT1B/1D agonist in vivo in the guinea pig following oral administration (ED50 = 0.13 mg/kg).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号