首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 46 毫秒
1.
张德谨  陈义勇  胡雅琳  刘祥 《食品与机械》2018,34(2):166-170,194
为了对乌饭树叶黄酮进行纯化,通过动态吸附与解吸试验,探讨上样体积、上样浓度、上样流速、洗脱剂、洗脱流速以及洗脱体积对乌饭树叶黄酮吸附及解吸效果的影响,然后利用蛋白质和多糖的脱除率以及HPLC谱图对纯化效果进行评价。结果表明:NKA-II树脂具有较高的吸附率、解吸率以及较短的吸附时间,确定NKA-II树脂作为乌饭树叶黄酮纯化的柱填料,大孔树脂NKA-II纯化乌饭树叶黄酮最佳工艺条件为:上样体积2.0BV(柱体积),上样浓度0.75mg/mL,上样流速1 mL/min,洗脱剂为50%(体积分数)的乙醇,洗脱流速1.0 mL/min,洗脱体积3BV。在该纯化工艺条件下,HPLC表明纯化后乌饭树叶黄酮纯度明显提高,蛋白质脱除率达76.32%,多糖脱除率达65.45%,黄酮纯度达48.92%。  相似文献   

2.
大孔树脂纯化菠萝蜜果皮黄酮工艺   总被引:1,自引:0,他引:1  
本实验以菠萝蜜果皮为原料,比较5种大孔树脂对菠萝蜜果皮黄酮吸附率和解吸率的影响,筛选出适合纯化菠萝蜜果皮黄酮的大孔树脂,通过单因素和正交实验优化纯化工艺;测定菠萝蜜果皮黄酮纯化前后清除DPPH自由基和ABTS自由基作用,分析纯化效果。结果表明:NKA-9树脂纯化菠萝蜜黄酮效果较好,最佳条件为粗提液浓度6 mg/m L,上样流速1.5 m L/min;洗脱剂70%(v/v)乙醇,洗脱流速2.5 m L/min,菠萝蜜果皮黄酮纯度提高至80.15%。菠萝蜜果皮黄酮纯化后清除DPPH自由基和ABTS自由基IC50值分别为0.0054、0.015 mg/m L,优于纯化前的IC50值0.041、0.092 mg/m L。以上说明,NKA-9树脂适合分离纯化菠萝蜜果皮黄酮。   相似文献   

3.
大孔树脂纯化银杏叶黄酮的研究   总被引:1,自引:1,他引:1       下载免费PDF全文
以脱脂银杏叶粉为原料,采用70%乙醇浸提法提取银杏叶黄酮,研究大孔树脂纯化银杏叶黄酮的工艺条件。以吸附率和解吸率为指标,考察了AB-8、D101、HPD-100 3种大孔树脂对银杏叶黄酮的吸附解吸性能,筛选出适合银杏叶黄酮分离纯化的树脂为AB-8型大孔树脂。结合静态与动态吸附解吸试验,得出AB-8大孔树脂分离纯化银杏叶黄酮的最佳工艺:将银杏叶黄酮提取原液稀释1.5倍(浓度为0.94 mg/mL)、调pH至4.85作为上样液,以1.5 BV/h的流速上样吸附,上样量200 mL,之后采用pH 4.95的80%乙醇作为洗脱剂,以2~2.5 BV/h的流速进行洗脱,洗脱剂用量约50 mL。在此纯化条件下所得银杏叶黄酮含量为26.16%,较纯化前提高了3.2倍。该纯化工艺条件科学合理,可有效用于银杏叶黄酮的分离富集,提高银杏叶提取物中的黄酮含量。  相似文献   

4.
本文用大孔吸附树脂分离纯化荷叶黄酮。选择3种大孔吸附树脂,通过比较其对荷叶黄酮的静态吸附结果,筛选出较好的荷叶黄酮吸附剂,并对其动态吸附及解析性能进行了考察。结果表明:AB-8型大孔吸附树脂对荷叶黄酮有较好的吸附和解析效果,适合用于荷叶黄酮的精制。  相似文献   

5.
以孝感产荷叶为实验材料,通过筛选树脂的类别、研究洗脱剂浓度、pH值、流速对吸附过程的影响,确定出大孔树脂纯化荷叶黄酮的新方法.结果表明,大孔树脂HPD-100对荷叶黄酮的吸附量大,解析率高,纯化效果较好,最佳柱层析条件:洗脱剂浓度为70%vol、洗脱液pH值为5.0、洗脱流速为1mL/min.将洗脱液浓缩,真空干燥即得高纯度荷叶黄酮,纯度达90%以上.  相似文献   

6.
在前期研究麦胚黄酮最佳浸提工艺基础上,为探讨麦胚黄酮纯化工艺,本实验选择大孔树脂对其进行分离纯化。以吸附能力、吸附率及解吸率为考察指标,从7种型号大孔树脂中筛选出分离纯化麦胚黄酮效果优的树脂,并确定该树脂的最佳工艺条件。结果表明,H103大孔树脂的吸附率、吸附能力都较高,为麦胚黄酮最佳分离树脂,其最佳工艺条件为上样浓度约0.65 mg/m L、上样速度2.0 BV/h、解吸乙醇浓度70%、解吸速度2.0 BV/h。经H103树脂分离后的麦胚黄酮纯度大大提高,为11.77%,比浸提液中麦胚黄酮纯度0.96%提高了12.26倍。   相似文献   

7.
研究沉香叶黄酮的大孔树脂纯化工艺及其抗氧化性。通过静态和动态实验,考察树脂种类、粗提液浓度、洗脱剂、上样流速、洗脱流速对沉香叶黄酮吸附解吸性能的影响,确定最佳纯化工艺条件;采用羟自由基法、DPPH自由基和ABTS自由基法,比较纯化前后沉香叶黄酮的抗氧化性。结果表明,NKA-9大孔树脂纯化沉香叶黄酮效果最好,最佳条件为:以1.5 mL/min速度将5.0 mg/mL粗提液上柱,用70%(v/v)乙醇以2.0 mg/mL速度洗脱,此条件下沉香叶黄酮纯度提高至76.58%±3.46%。沉香叶黄酮纯化后清除羟自由基、DPPH自由基和ABTS自由基IC50值分别为(0.120±0.008)、(0.016±0.009)、(0.042±0.002)mg/mL,远低于纯化前的(0.300±0.015)、(0.170±0.008)、(0.160±0.009)mg/mL,说明沉香叶黄酮纯化前后均具有较强的抗氧化性,纯化后抗氧化性明显增强。NKA-9大孔树脂适合分离纯化沉香叶黄酮。  相似文献   

8.
选择D101和AB-8两种大孔树脂,比较其对甘薯叶中黄酮类化合物的吸附率和解吸率,并时其静态吸附动力学曲线进行考察,筛选出最佳树脂.结果表明:AB-8树脂对甘薯叶类黄酮化合物有较好的吸附和解吸效果,吸附率平均为14.1 mg/g,解吸率平均为80.1%;正交试验考察pH值、料液比、上样液浓度等影响吸附性能的因素结果表明上样液的浓度是影响吸附率的主要因素,其吸附甘薯叶黄酮类化合物适宜的条件为:上样液浓度1.0g/L,pH值为酸性.料液比为1:20;用85%乙醇洗脱时,解吸率达83.33%,AB-8树脂综合性能较好,适合于甘薯叶中黄酮类的分离纯化.  相似文献   

9.
大孔吸附树脂法纯化木薯叶黄酮的初步研究   总被引:1,自引:1,他引:0  
研究大孔吸附树脂纯化木薯叶黄酮的工艺条件,比较大孔树脂HPD100、D151、001×1.1、NKA-9、H103和D101对木薯叶黄酮的吸附性能,并对影响树脂解吸的各种因素进行了研究.在考察的6种树脂中.树脂HPD100最适于木薯叶黄酮的分离纯化,具有较高的吸附性,达20Smg/g(干重),同时具有良好解吸性能,用7倍树脂体积的70%乙醇洗脱,解吸率可达96.78%.  相似文献   

10.
通过静态吸附与解吸附试验确定纯化太空茄叶黄酮的大孔树脂类型并优化其工艺条件,对纯化前后太空茄子叶黄酮的抗氧化活性进行对比分析。结果表明,NKA-II为最佳树脂;NKA-II纯化太空茄子叶黄酮的适宜条件:粗黄酮上样浓度0.362 6mg/mL、上样液pH 2、静态吸附2.5h、用70%的乙醇(pH=3)解吸40 min,黄酮含量由纯化前17.91%上升到64.59%,纯化率提高3.61倍;与芦丁比较,纯化后黄酮对ABTS~+·、DPPH·的清除能力均小于芦丁,且纯化后黄酮对ABTS~+·的清除能力高于纯化前。  相似文献   

11.
通过单因素实验对影响微波辅助提取榛子叶中黄酮类化合物的主要因素进行了考察,确定了最佳提取条件是:乙醇浓度为55%(V/V),料液比为1∶35(g∶mL),微波温度80℃,微波功率300W,提取时间5min。并对提取出的黄酮物质进行纯化,通过比较AB-8、D101等八种大孔吸附树脂的静态吸附和解吸性能,筛选出适合纯化榛子叶黄酮的树脂类型;采用动态法对样品液流速、样品液pH、解析液pH和解析液乙醇浓度进行了研究;同时采用高效液相色谱法对纯化前后的黄酮进行了分析比较。结果表明,D101型大孔树脂对榛子叶黄酮具有较佳的吸附和解吸性能,最佳纯化条件为:样品液流速为2BV/h、样品液pH4、解析液pH4,解析液乙醇浓度为70%。在此条件下,纯化后的榛子叶黄酮含量提升至54.7%。   相似文献   

12.
通过比较六种大孔吸附树脂对水芹粗黄酮提取物静态吸附性能,筛选出大孔吸附树脂AB-8,并考察了动态吸附条件中的上样流速、洗脱溶剂浓度和体积及洗脱速率。结果表明,AB-8大孔吸附树脂对水芹黄酮的静态吸附率为71.37%,解吸率为76.57%,动态吸附优化条件为:上样流速为1mL/min,采用4BV 80%乙醇以1.5mL/min流速洗脱,黄酮含量为42.60mg的水芹粗提物纯度由7.1%提高到53.78%,树脂富集倍数7.6。通过HPLC初步分析,纯化前后黄酮种类基本不变,主要为芦丁、槲皮素-3-O-葡萄糖苷、槲皮素、山奈酚这四种成分,以HPLC测定的总黄酮含量为指标计算纯化前后水芹粗提物纯度分别为6.44%和55.65%,树脂富集倍数为8.65。   相似文献   

13.
大孔树脂纯化碱提花生壳总黄酮   总被引:2,自引:0,他引:2  
初步探讨了大孔树脂纯化碱提花生壳总黄酮的工艺条件,对大孔树脂的种类及其静态吸附、解吸附条件进行初步探讨。通过静态吸附和解吸附的比较,从6种不同型号的大孔吸附树脂中选出DM301进行静态吸附解吸动力学,发现其吸附解吸平衡时间分别为3 h和5 h。通过单因素实验,DM301的最佳吸附条件为20℃、pH8.5,样液中花生壳总黄酮初始浓度为(0.138±0.01)mg/mL;最佳解吸条件为解吸液乙醇浓度80%,解吸液pH9.5,解吸液用量7.5 mL/g湿树脂。  相似文献   

14.
为了分离、纯化锁阳总黄酮,比较了5种大孔树脂的静态吸附过程,筛选出了适合分离锁阳总黄酮的树脂。结果表明,AB-8树脂对锁阳总黄酮有较好的分离纯化效果,其吸附过程可用Langmuir和Freundlich吸附等温式来描述;吸附条件:溶液质量浓度3.9 mg/mL,pH值为5,吸附体积5 BV,流速2 BV/h,温度25 ℃;洗脱条件:体积分数为60%乙醇洗脱体积5 BV,体积分数为70%乙醇洗脱体积10 BV,流速2 BV/h,锁阳总黄酮纯度由9.83%升高至67.8%,其回收率为84.02%。因此,AB-8大孔树脂较适合分离纯化锁阳总黄酮。  相似文献   

15.
BACKGROUND: This study developed a feasible process to simultaneously separate and purify polyphenols, including flavonoids and oleuropein, from the leaves of Olea europaea L. Macroporous resins were used as the separation and purification materials. The performance and separation capabilities of eight resins (D101, DM130, HPD450, LSA‐21, LSA‐40, 07C, LSD001 and HPD600) were systematically evaluated. The contents of target polyphenols in different extracts were determined using ultraviolet (for flavonoids) and high‐performance liquid chromatographic (for oleuropein) methods. The static adsorption and desorption results showed that resin LSA‐21 had better adsorption properties among the eight resins. Influential factors such as extraction method, pH value of feeding solution, desorption solution, adsorption kinetics and adsorption isotherm, etc. to the extraction and purification of these polyphenols were successively investigated on resin LSA‐21. RESULTS: The target flavonoids and oleuropein were selectively purified using resin LSA‐21. Compared with the contents in raw leaves, the contents of total flavonoids and oleuropein in the final purified products were increased 13.2‐fold (from 16 to 211 g kg?1) and 7.5‐fold (from 120 to 902 g kg?1) with recovery yields of 87.9% and 85.6%, respectively. CONCLUSION: This extraction and purification method could be used in the large‐scale enrichment or purification of flavonoids, oleuropein and other polyphenols from O. europaea L. leaves or other herbal materials in industrial, food processing and medical manufacture. Copyright © 2011 Society of Chemical Industry  相似文献   

16.
李晨  姜子涛  李荣 《食品科技》2012,(9):212-217
以樱桃叶总黄酮的吸附率和解吸率为指标,采用静态吸附解吸法确定出合适的大孔吸附树脂;动态吸附与解吸法确定纯化条件,分析了样品液pH、吸附流速以及洗脱液浓度、洗脱流速、洗脱液用量对动态纯化的影响;同时采用高效液相色谱法进行分析检测以表征纯化效果。实验结果表明,大孔吸附树脂D101对樱桃叶总黄酮有很好的吸附解吸性能,其最佳动态纯化条件为:樱桃叶总黄酮样品液浓度1.0mg/mL、pH4、吸附流速2BV/h,D101树脂的最大吸附容量为17.34mg/g(以干树脂计)。洗脱剂为70%乙醇,以2BV/h的流速,3倍柱体积即可充分洗脱吸附在D101树脂上的黄酮,纯化后樱桃叶黄酮纯度提升到74.29%,约为纯化前的3倍。  相似文献   

17.
以玉竹提取物为原料,以总黄酮吸附率及解吸率为指标,采用动态吸附—解吸的方法筛选出大孔树脂的类型。通过单因素实验和正交实验确立了D-101树脂吸附玉竹总黄酮的优化工艺条件,洗脱过程考察了主要影响因素洗脱剂浓度及其用量。优化后的吸附工艺条件为:树脂用量55 g、上柱药液浓度40.54μg/m L、上柱液p H 6、吸附流速0.5 BV/h。解吸过程解吸液乙醇浓度和用量分别为60%和100 m L。经D-101大孔树脂分离纯化后,玉竹提取物总黄酮的纯度由0.36%提高到2.05%。该纯化方法低廉、安全、操作简单,有较高的应用价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号