首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
电子封装用环氧树脂的增韧和提高耐热性研究   总被引:7,自引:1,他引:7  
黎艳  刘伟区  宣宜宁 《精细化工》2004,21(Z1):82-85
用α,ω 二氯聚二甲基硅氧烷(DPS)或α 氯聚二甲基硅氧烷(CPS)来改性普通双酚A环氧树脂(BPAER)和四溴双酚A环氧树脂(TBBPAER),目标是制备出一系列可用于电子封装的高韧性高耐热性的环氧基料。通过对固化物的冲击强度、拉伸强度、断裂伸长率和玻璃化转变温度(Tg)以及断裂面形态的测定,探讨了改性方法、有机硅组成与含量等对材料性能的影响。结果表明,当m(BPAER)∶m(DPS)=100∶10时,树脂固化物的冲击强度达到30 5kJ/m2,拉伸强度达46 95MPa,断裂伸长率达到60 23%,Tg达到141 3℃;分别比未改性BPAER提高了19 7kJ/m2,1 69MPa,54 29%以及5 9℃。而当m(TBBPAER)∶m(CPS)=100∶10时,固化物的冲击强度达到17 2kJ/m2,拉伸强度达39 89MPa,断裂伸长率达到5 60%,Tg达到147 0℃;分别比未改性TBBPAER提高了12 8kJ/m2,28 26MPa,4 29%以及7 9℃。  相似文献   

2.
用原位法合成了含硼的双酚S甲醛树脂/纳米SiO2(nano-SiO2)杂化树脂,并用于固化双酚A环氧树脂。用差示扫描量热法、动态力学分析、热重研究了玻璃纤维增强复合材料的固化、动态力学性能及热性能,并对其力学性能和电性能进行了测定。结果表明:随着nano-SiO2含量的增加,复合材料的玻璃化转变温度降低,固化峰顶温度降低,但电性能变化不大。w(nano-SiO2)为3%时,复合材料的起始热分解温度最高,达335.1℃,比未加nano-SiO2的复合材料高18.3℃,此时拉伸强度和简支梁缺口冲击强度分别提高39.06MPa,34.51 kJ/m2。  相似文献   

3.
玻璃纤维布增强EP/PPO复合材料性能及应用   总被引:3,自引:2,他引:1  
利用材料试验机、扫描电镜、高频微波仪及差示扫描量热仪研究了玻璃纤维布增强环氧树脂(EP)/聚苯醚(PPO)复合材料的弯曲性能、相态、介电性能和耐热性。结果表明,树脂含量对EP/PPO复合材料的弯曲强度和介电性能影响很大,在树脂质量分数约为40%时,复合材料的弯曲强度最大;当树脂质量分数大于30%时,介电常数的理论预测值与实验结果基本符合;硅烷偶联剂KH-550处理玻璃纤维布制得复合材料的弯曲性能较优;玻璃纤维布增强EP/PPO复合材料的热性能比纯EP/PPO树脂的热稳定性好。  相似文献   

4.
短切玻璃纤维增强环氧树脂胶粘剂的耐温性能研究   总被引:2,自引:0,他引:2  
以短切玻璃纤维作为环氧树脂(EP)的增强剂,并以PA650/T31(聚酰胺650/改性胺类曼尼希型固化剂)作为复合固化剂,制备了综合性能良好的胶粘剂。研究结果表明:复合固化剂可有效改善胶粘剂的性能,当m(EP)∶m(PA650)∶m(T31)=10∶4∶2、常温固化时间为18 h时,胶粘剂的拉伸剪切强度相对最大(15.64 MPa);加入1.2%玻璃纤维的胶粘剂在230℃时的拉伸剪切强度提高了32.06%;玻璃纤维增强EP使得胶粘剂的热分解温度提升至300℃,同时热失重率从63.55%下降至56.09%。  相似文献   

5.
焦剑  刘蓬  刘鹏  蔡宇  吴广力 《塑料工业》2012,40(11):20-23,27
以三乙烯四胺(TETA)为固化剂,采用共混法制备八环氧基笼型倍半硅氧烷(G-POSS)/环氧树脂(EP)杂化材料。研究了环氧基POSS含量对杂化材料的固化反应、介电性能、力学性能及热性能等影响,并对杂化材料的微观相态结构进行了表征和分析。结果表明,G-POSS的引入提高了EP的反应活性,制备的杂化材料透明性良好,力学性能、介电性等都有所提高;且当m(G-POSS)m∶(EP)=20 1∶00时,杂化材料的介电性能、力学强度和刚性提高较为明显,且其断面形貌呈韧性断裂。其拉伸强度为67.8 MPa、断裂伸长率为3.44%、弯曲强度为116.7 MPa,与纯EP相比,分别提高了83.20%、320.13%、49.17%。  相似文献   

6.
聚苯醚/聚丁二烯共混物及其复合材料的性能研究   总被引:1,自引:0,他引:1  
采用DMA和SEM等手段研究了聚苯醚(PPO)与聚丁二烯(PB)共混体系的相容性,测试了共混物的流变性能,玻璃纤维增强复合材料的介电性能、力学性能、耐溶剂性和吸水率.结果表明:在聚苯醚与聚丁二烯的共混切中加入相容剂可以有效的提高共混物的相容性,共混物的溶解温度宜控制在50~60℃;复合材料层压板具有优异的介电性能、较好的力学性能、良好的耐溶剂性能和低的吸水率.PPO/PB共混物与玻璃纤维之间具有良好的界面粘结性能.聚苯醚的含量对共混体系的介电性能有一定的影响.随着PB的加入,使得复合材料的耐溶剂性能得到很大的改善.  相似文献   

7.
测定了三种α-甲基丙烯酸钝化2-乙基-4-甲基咪唑固化环氧树脂(EP)体系的凝胶时间及固化反应放热曲线,制定了EP固化体系的固化工艺条件,并对这三种EP固化体系的室温(20℃)储存特性及其浇铸体的综合性能进行了比较。结果表明:这三种EP固化体系均可在80℃时快速固化,浇铸体的固化工艺条件为80℃/4 h;当m(E-51)∶m(Eg-031)∶m(固化剂)=25∶25∶2时,EP固化体系预浸料具有最长的储存期(15 d),是综合性能优良的低成本复合材料制造用基体树脂,其弯曲强度、弯曲模量、冲击强度和热变形温度分别为109.3 MPa、3.0 GPa、7.76 kJ/m2和125℃。  相似文献   

8.
通过动态力学分析、差示扫描量热分析和电性能测试,研究了固化剂六亚甲基四胺含量对玻纤增强酚醛复合材料性能的影响,并确定了固化工艺参数。结果表明:随着固化剂含量的增加,复合材料的储能模量提高,力学损耗峰变窄,峰值降低;与固化剂含量为6%时相比,当固化剂含量为10%时,复合材料的玻璃化温度提高了23℃,当固化剂含量为12%时,热变形温度提高了34℃;复合材料的冲击强度在固化剂含量为12%时达最大值,吸水率在固化剂含量为10%时达最小值;复合材料的电性能随着固化剂含量的增加而得到提高;固化剂含量10%时的复合材料的固化工艺为:凝胶温度145℃、固化温度156℃、后处理温度173℃。  相似文献   

9.
以兼具引发剂和稀释剂功能的自制BH-1为固化剂,通过引入低黏度活性稀释剂,制备室温固化EP(环氧树脂)胶粘剂;然后以EP/BH-1/活性稀释剂为基体、单向玻璃纤维为增强材料,制备相应的复合材料。研究结果表明:当w(BH-1)=4%时,EP浇铸体的室温(25℃)凝胶时间约为8.5 h和玻璃化转变温度(Tg)为130.9℃,并具有优异的力学性能,其冲击强度为50.0 kJ/m2、拉伸强度和模量分别为0.075 GPa和2.80 GPa、弯曲强度和模量分别为0.136 GPa和3.02 GPa;当m(EP)∶m(BH-1)∶m(活性稀释剂)=100∶4∶10时,复合材料的弯曲强度(0.984 GPa)和层间剪切强度(56.1 MPa)分别提高了26.4%和15.2%。  相似文献   

10.
以含砜基多元酚混合物为原料合成了苯并噁嗪(MS-a),以MS-a或将其与其它热固性树脂共混制得玻璃布层压板。采用傅里叶红外光谱(FT-IR)、核磁共振氢谱(1H-NMR)表征了MS-a的化学结构,用示差扫描量热分析(DSC)、热失重分析(TGA)、动态热机械分析(DMA)研究了它的热固化行为和热稳定性。测试了其玻璃布层压板的弯曲性能、阻燃性能和介电性能。结果表明,MS-a具有较低的固化温度,其固化物在800℃下残炭率达到61.8%,制成的玻璃布层压板具有较高的T g(219.9℃),良好的力学性能和介电性能,阻燃级别达到UL94 V-0级。  相似文献   

11.
以含硅多芳炔化合物(PSA)与1,3,5-三叠氮甲基-2,4,6-三甲基苯(TAMTMB)为原料,通过1,3-偶极环加成反应制备了新型含硅聚三唑树脂Si-PTA3,考察了树脂的流变性能、固化行为、热性能及单体配比对其热性能的影响。采用模压法制备了单向T700碳纤维增强的Si-PTA3树脂复合材料T700/Si-PTA3,测定了其力学性能。结果表明,Si-PTA3树脂具有良好的加工性能,可在80℃下固化,耐热性较好;炔基与叠氮基摩尔比为1.1:1.0时树脂固化物的热性能最好,玻璃化转变温度达334℃,在氮气中热失重5%时的温度达351℃;复合材料T700/Si-PTA3常温下的弯曲强度高于1670 MPa,250℃时弯曲强度保留率超过67%。  相似文献   

12.
采用CYD-128(E1)、双酚F环氧树脂(E2)、己二醇二缩水甘油醚(E3)为主要原材料配制可用于真空灌注的环氧树脂体系,通过粘度和拉伸、弯曲性能测试及示差扫描量热分析研究了树脂体系的流变特性,固化物力学性能和耐热性。结果表明,E1,E2,E3的质量比为65∶15∶20,固化剂为CYDHD-501,固化条件为70℃/6 h时,体系初始粘度较低,工艺性好,固化后力学性能、热性能优异,能够满足1.5 MW风电叶片用环氧树脂指标要求。  相似文献   

13.
The curing reaction of bisphenol‐A epoxy resin (BPAER) with boron‐containing phenol–formaldehyde resin (BPFR) was studied by isothermal and dynamic differential scanning calorimetry (DSC). The kinetic reaction mechanism in the isothermal reaction of BPAER‐BPFR was shown to follow autocatalytic kinetics. The activation energy in the dynamic cure reaction was derived. The influence of the composition of BPAER and BPFR on the reaction was evaluated. In addition, the glass transition temperatures (Tgs) were measured for the BPAER‐BPFR samples cured partially at isothermal temperatures. With the curing conditions varying, different glass transition behaviors were observed. By monitoring the variation in these Tgs, the curing process and the thermal property of BPAER–BPFR are clearly illustrated. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 1054–1061, 2000  相似文献   

14.
含二氮杂萘酮结构环氧树脂胶粘剂的研制   总被引:1,自引:1,他引:0  
以双氰胺 (DCDA)为固化剂 ,以咪唑 (MZ)为固化促进剂 ,研制了一种含二氮杂萘酮结构的环氧树脂 (ER)胶粘剂 ,其成分为ER∶DCDA∶MZ∶SiO2 ∶Al=10 0∶7∶1∶3∶60 ,固化工艺为 12 0℃下固化 40min时 ,拉伸剪切强度为 17.8MPa ,有良好耐热性  相似文献   

15.
通过两步法在环氧树脂主链中成功引入了聚氨酯链段,合成了新型环氧树脂。采用傅立叶变换红外光谱仪、热失重分析仪、差示扫描量热仪等对其进行了结构、热学和力学性能表征。通过合成条件优化及固化过程的研究,得到了最佳反应条件:第一步反应为50℃下反应1 h,第二步反应为70℃下反应1 h,固化条件为110℃反应1 h,升高至140℃后反应2 h,继续升高至160℃后再反应1 h。通过对固化后环氧树脂的热性能及拉伸性能的研究发现,聚氨酯链段的引入可将环氧树脂的断裂伸长率提高至36.7%~130.1%,但是却在一定程度上降低了其热稳定性和拉伸强度。  相似文献   

16.
以碱为催化剂,通过酚醛树脂与4-硝基邻苯二甲腈之间的亲核取代反应,制备了邻苯二甲腈醚化酚醛树脂(BPN)并采用红外光谱,GPC,流变仪,DSC及TGA对其性能进行了研究。结果表明,BPN树脂加工窗口约为65℃,最小粘度约为300 mPa.s,具有优良的加工性能。BPN固化温度为175~350℃,固化反应峰值温度为290℃,说明该树脂通过酚羟基对邻苯二甲腈基团的催化热聚合反应,实现了含氰基树脂的单组分、较低温度的加成固化。BPN树脂在温和的后固化条件下(250℃/6 h)即可获得优良的热稳定性,其5%失重温度约为420℃,氮气氛围900℃残炭率约为72%。  相似文献   

17.
风力发电机叶片用环氧树脂胶粘剂的研究   总被引:4,自引:1,他引:3  
研究了618#环氧树脂和自制的FC-A1,FC-A2树脂与自制的FC-350,FC-351固化剂组成的3种体系的流变特性和固化行为,探讨了固化体系配比和固化温度对浇注体的拉伸和弯曲强度等力学性能的影响。结果表明,体系最佳配比(质量比)为100∶35,固化工艺为25℃/24 h+70℃/8 h。该体系可望用作风力发电机叶片胶粘剂。  相似文献   

18.
Liquid crystalline epoxy resin (LC epoxy resin) – p-phenylene di{4-[2-(2,3-epoxypropyl)ethoxy]benzoate} (PEPEB) was synthesized. The mixture of PEPEB with bisphenol-A epoxy resin (BPAER) was cured with a curing agent 4,4-diamino-diphenylmethane (DDM). The curing process and thermal behavior of this system were investigated by differential scanning calorimeter (DSC) and torsional braid analysis (TBA). The morphological structure was measured by polarizing optical microscope (POM) and scanning electron microscope (SEM). The results show that the initial curing temperature Ticu (gel point) of this system is 68.1°C, curing peak temperature T pcu is 102.5°C, and the disposal temperature T fcu is 177.6°C. LC structure was fixed in the cured epoxy resin system. The curing kinetics was investigated by dynamic DSC. Results showed that the curing reaction activation energy of BEPEB/BPAER/DDM system is 22.413 kJ/mol. The impact strength is increased 2.3 times, and temperature of mechanical loss peak is increased to 23°C than the common bisphenol-A epoxy resin, when the weight ratio of BEPEB with BPAER is 6 100.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号