首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Algae are underexplored resources in Western countries and novel approaches are needed to boost their industrial exploitation. In this work, eight edible seaweeds were subjected to their valorization in terms of nutritional characterization, thermochemical properties, and bioactive profile. Our results suggest that seaweeds present a rich nutritional profile, in which carbohydrates are present in high proportions, followed by a moderate protein composition and a valuable content of ω-3 polyunsaturated fatty acids. The thermochemical characterization of seaweeds showed that some macroalgae present a low ash content and high volatile matter and carbon fixation rates, being promising sources for alternative biofuel production. The bioactive profile of seaweeds was obtained from their phenolic and carotenoid content, together with the evaluation of their associated bioactivities. Among all the species analyzed, Porphyra purpurea presented a balanced composition in terms of carbohydrates and proteins and the best thermochemical profile. This species also showed moderate anti-inflammatory activity. Additionally, Himanthalia elongata extracts showed the highest contents of total phenolics and a moderate carotenoid content, which led to the highest rates of antioxidant activity. Overall, these results suggest that seaweeds can be used as food or functional ingredient to increase the nutritional quality of food formulations.  相似文献   

2.
Corals are constantly exposed to ubiquitous microbes. Detrimental effects of microbes on corals include surface fouling and disease. To prevent fouling and disease, corals need to resist microbial colonization and invasion. One way that this could be achieved is by chemical defense. Extracts from 100 scleractinian coral species (44 genera and 13 families) were screened for antimicrobial activity against seven microbe species (Alteromonas rubra, Photobacterium damsela, Vibrio harveyi, Vibrio alginolyticus, Vibrio parahaemolyticus, Synechococcus sp., and Staphylococcus aureus). Activity against Synechococcus sp. (a marine cyanobacterium) was recorded in 100 coral species, and eight of these coral species also inhibited the growth of marine bacteria. The extent of microbial colonization on coral surfaces was assessed in 20 scleractinian species to test the hypothesis that fewer microbes occur on corals that have antimicrobial compounds. Bacterial counts exceeded cyanobacterial counts on coral surfaces, and coral species with antibacterial activity had the fewest bacteria on their surfaces. Thus, corals with less heavily colonized surfaces chemically inhibit microbial colonization.  相似文献   

3.
Because herbivory is more intense in the tropics, tropical seaweeds may be better defended against herbivory than are temperate seaweeds. A “diffuse” coevolutionary corollary to this hypothesis is that tropical herbivores should be more resistant to seaweed defenses than temperate herbivores because tropical herbivores more commonly encounter heavily defended seaweeds. We begin to test the latter prediction using three newly discovered diterpenoid secondary metabolites from the tropical brown alga Dictyota acutiloba. We tested the feeding deterrent properties of these compounds against common herbivorous fishes and sea urchins from warm-temperate North Carolina versus tropical Guam using standardized laboratory feeding assays. The temperate herbivores were deterred by lower concentrations of secondary metabolites than the tropical herbivores. In no case was a tropical herbivore more deterred by a compound than a temperate herbivore, suggesting that temperate herbivores may be more strongly affected by seaweed chemical defenses. Feeding by the temperate pinfish Lagodon rhomboides was significantly reduced by two of the three diterpenes at a concentration that was only 13–18% of the natural concentration found in the alga. Feeding by four species of tropical fishes (two parrotfishes and two surgeonfishes) was unaffected by metabolite concentrations that deterred the temperate fish. At 100% of natural concentrations, only one of the three compounds deterred the two parrotfishes, and none of the three compounds deterred the surgeonfishes. Contrasts between the temperate sea urchin Arbacia punctulata and the tropical sea urchin Diadema savignyi showed a similar pattern; low concentrations of acutilol A acetate strongly deterred the temperate, but not the tropical, urchin. Tropical herbivores appear more resistant than temperate herbivores to seaweed chemical defenses.  相似文献   

4.
Potential Ecological Roles of Artemisinin Produced by Artemisia annua L.   总被引:1,自引:0,他引:1  
Artemisia annua L. (annual wormwood, Asteraceae) and its secondary metabolite artemisinin, a unique sesquiterpene lactone with an endoperoxide bridge, has gained much attention due to its antimalarial properties. Artemisinin has a complex structure that requires a significant amount of energy for the plant to synthesize. So, what are the benefits to A. annua of producing this unique compound, and what is the ecological role of artemisinin? This review addresses these questions, discussing evidence of the potential utility of artemisinin in protecting the plant from insects and other herbivores, as well as pathogens and competing plant species. Abiotic factors affecting the artemisinin production, as well as mechanisms of artemisinin release to the surroundings also are discussed, and new data are provided on the toxicity of artemisinin towards soil and aquatic organisms. The antifungal and antibacterial effects reported are not very pronounced. Several studies have reported that extracts of A. annua have insecticidal effects, though few studies have proven that artemisinin could be the single compound responsible for the observed effects. However, the pathogen(s) or insect(s) that may have provided the selection pressure for the evolution of artemisinin synthesis may not have been represented in the research thus far conducted. The relatively high level of phytotoxicity of artemisinin in soil indicates that plant/plant allelopathy could be a beneficial function of artemisinin to the producing plant. The release routes of artemisinin (movement from roots and wash off from leaf surfaces) from A. annua to the soil support the rationale for allelopathy.  相似文献   

5.
Alcyonacean soft corals lack physical or skeletal defenses and their nematocyst system is weak, leading to the conclusion that soft corals mainly rely on chemistry for protection from predators and microbes. Defensive chemicals of primary and secondary metabolic origin are exuded in the mucus surface layer, explaining the general lack of heavy fouling and predation in corals. In Antarctic ecosystems, where generalist predation is intense and mainly driven by invertebrate consumers, the genus Alcyonium is represented by eight species. Our goal was to investigate the understudied chemical ecology of Antarctic Alcyonium soft corals. We obtained six samples belonging to five species: A. antarcticum, A. grandis, A. haddoni, A. paucilobulatum, and A. roseum, and assessed the lipid-soluble fractions for the presence of defensive agents in these specimens. Ethyl ether extracts were tested in feeding bioassays with the sea star Odontaster validus and the amphipod Cheirimedon femoratus as putative sympatric predators. Repellent activities were observed towards both consumers in all but one of the samples assessed. Moreover, three of the extracts caused inhibition to a sympatric marine bacterium. The ether extracts afforded characteristic illudalane sesquiterpenoids in two of the samples, as well as particular wax esters subfractions in all the colonies analyzed. Both kinds of metabolites displayed significant deterrent activities demonstrating their likely defensive role. These results suggest that lipophilic chemicals are a first line protection strategy in Antarctic Alcyonium soft corals against predation and bacterial fouling.  相似文献   

6.
The aim of the present study was to see the applicability of using brown edible seaweeds as a sole source of nutrition for the growth of lactic acid bacteria. Growth kinetics of lactic acid bacteria (LAB; Lactobacillus plantarum) was studied using three species of edible Irish brown seaweeds Himanthalia elongata, Laminaria digitata and Laminaria saccharina. As part of the screening process, growth of the LAB was carried out on raw and heat treated forms of seaweeds. The seaweed species in their raw state could not support the growth of L. plantarum. Heat treatment resulted in almost 4 times increase in the total sugar content in L. digitata and L. saccharina broth which allowed the growth of L. plantarum for 24 h after which the cell number started decreasing. The Laminaria spp. contains a high content of laminaran polysaccharide which can be fermented by LAB. In case of H. elongata, neither raw nor heat treated forms could be fermented; even though the total sugar content increased 4.6 times upon the application of heat. Kinetics of cell growth, lactic acid and acetic acid production was evaluated at different agitation rates in heat treated seaweeds. A maximum log CFU/ml of 10 was achieved at the end of 16-24 h of fermentation for L. saccharina and L. digitata, respectively. The cell growth increased and lactic acid accumulation decreased as the agitation speed was increased from 0 to 100 rpm. Maximum lactic acid accumulation of 2.5 g/l was achieved under static (0 rpm) conditions. The production of acetic acid was very minimal during the entire course of fermentation. Experimental data was mathematically modelled to optimize the cell growth and lactic acid production with respect to the different rotation conditions. The results of this study present an indication of the potential of fermentation of seaweeds using LAB with a possibility towards the development of a range of functional foods.  相似文献   

7.
Fucoxanthin is the main carotenoid produced in brown algae as a component of the light-harvesting complex for photosynthesis and photoprotection. In contrast to the complete elucidation of the carotenoid biosynthetic pathways in red and green algae, the biosynthetic pathway of fucoxanthin in brown algae is not fully understood. Recently, two models for the fucoxanthin biosynthetic pathway have been proposed in unicellular diatoms; however, there is no such information for the pathway in brown seaweeds to date. Here, we propose a biosynthetic pathway for fucoxanthin in the brown seaweed, Ectocarpus siliculosus, derived from comparison of carotenogenic genes in its sequenced genome with those in the genomes of two diatoms, Thalassiosira pseudonana and Phaeodactylum tricornutum. Currently, fucoxanthin is receiving attention, due to its potential benefits for human health. Therefore, new knowledge regarding the medical and nutraceutical properties of fucoxanthin from brown seaweeds is also summarized here.  相似文献   

8.
Adhesion of bacteria on biomedical implant surfaces is a prerequisite for biofilm formation, which may increase the chances of infection and chronic inflammation. In this study, we employed a novel electrospray-based technique to develop an antibacterial surface by efficiently depositing silica homogeneously onto polyethylene terephthalate (PET) film to achieve hydrophobic and anti-adhesive properties. We evaluated its potential application in inhibiting bacterial adhesion using both Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus) bacteria. These silica-deposited PET surfaces could provide hydrophobic surfaces with a water contact angle greater than 120° as well as increased surface roughness (root mean square roughness value of 82.50 ± 16.22 nm and average roughness value of 65.15 ± 15.26 nm) that could significantly reduce bacterial adhesion by approximately 66.30% and 64.09% for E. coli and S. aureus, respectively, compared with those on plain PET surfaces. Furthermore, we observed that silica-deposited PET surfaces showed no detrimental effects on cell viability in human dermal fibroblasts, as confirmed by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide and live/dead assays. Taken together, such approaches that are easy to synthesize, cost effective, and efficient, and could provide innovative strategies for preventing bacterial adhesion on biomedical implant surfaces in the clinical setting.  相似文献   

9.
Wettability of both the diamond and the insert surfaces by the filler metal in CVD diamond brazed-on cutting tools is a key condition for good brazing strength. The brazing process of CVD diamond thick plates still has to be improved, namely on the influence of the brazing alloy composition and of the substrate surface finishing quality in wettability. In this study, contact angle measurements were performed in a dedicated high vacuum furnace coupled with a video recording system. Diamond films with different thickness (75<t<300 μm), and thus having distinct grain sizes and roughness, were grown with fixed conditions by the MPCVD technique on Si substrates and chemically detached for wettability experiments. Roughness parameters were evaluated by profilometry and AFM, which was used to observe the grown diamond surfaces of the self-standing films. The reactive Ag–Cu–Ti brazing system was investigated. Results showed a very good wettability in the temperature range 800–850°C, namely for the diamond surface where a minimal contact angle of 10° was reached. A Ti-rich thin reaction layer (0.5–0.8 μm) was detected at the drop side of the substrate/brazing alloy interface in both substrate materials, proving the affinity of Ti to carbon. The influence of the diamond roughness on the contact angle θR is notable, obeying a linear dependence of the type cosθR=cosθ0+k cosθ0·(Ra/G)2, where Ra and G, the grain size, are related to asperity height and width, respectively. This relationship is based on the well-known Wenzel equation that correlates the real contact angle to the surface area increasing with roughness.  相似文献   

10.
The contamination of maize by Fusarium species able to produce mycotoxins raises great concern worldwide since they can accumulate these toxic metabolites in field crop products. Furthermore, little information exists today on the ability of Fusarium proliferatum and Fusarium graminearum, two well know mycotoxigenic species, to translocate from the seeds to the plants up to the kernels. Marketing seeds coated with fungicide molecules is a common practice; however, since there is a growing need for reducing chemicals in agriculture, new eco-friendly strategies are increasingly tested. Technologies based on ionized gases, known as plasmas, have been used for decades, with newer material surfaces, products, and approaches developed continuously. In this research, we tested a plasma-generated bilayer coating for encapsulating prothioconazole at the surface of maize seeds, to protect them from F. graminearum and F. proliferatum infection. A minimum amount of chemical was used, in direct contact with the seeds, with no dispersion in the soil. The ability of F. graminearum and F. proliferatum species to translocate from seeds to seedlings of maize has been clearly proven in our in vitro experiments. As for the use of plasma technology, the combined use of the plasma-generated coating with embedded prothioconazole was the most efficient approach, with a higher reduction of the infection of the maize seminal root system and stems. The debated capability of the two Fusarium species to translocate from seeds to seedlings has been demonstrated. The plasma-generated coating with embedded prothioconazole resulted in a promising sustainable approach for the protection of maize seedlings.  相似文献   

11.
Zinc oxide was deposited onto calcium carbonate precipitated using a template of polysaccharides from Ulva lactuca green seaweeds (Black Sea). The resulted composite material was characterized by X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, UV–vis and FTIR spectroscopy. The therapeutic effect of prepared composite material was assessed in vivo as a topical application for the burns treatment and compared with that of ZnO. An increased antioxidant activity by combining zinc oxide with calcium carbonate capped with polysaccharides from green seaweeds extract in a composite material was demonstrated.  相似文献   

12.
J. Seemann  Y. Sawall  H. Auel  C. Richter 《Lipids》2013,48(3):275-286
Following up on previous investigations on the stress resistance of corals, this study assessed the trophic plasticity of the coral Stylophora subseriata in the Spermonde Archipelago (Indonesia) along an eutrophication gradient. Trophic plasticity was assessed in terms of lipid content and fatty acid composition in the holobiont relative to its plankton (50–300 μm) food as well as the zooxanthellae density, lipid, FA and chlorophyll a content. A cross-transplantation experiment was carried out for 1.5 months in order to assess the trophic potential of corals. Corals, which live in the eutrophied nearshore area showed higher zooxanthellae and chlorophyll a values and higher amounts of the dinoflagellate biomarker FA 18:4n-3. Their lipid contents were maintained at similar to levels from specimens further away from the anthropogenic impact source going up to 14.9 ± 0.9 %. A similarity percentage analysis of the groups holobiont, zooxanthellae and plankton >55 μm found that differences between the FA composition of the holobiont and zooxanthellae symbionts were more distinct in the site closer to the shore, thus heterotrophic feeding became more important. Transplanted corals attained very similar zooxanthellae, chlorophyll a and lipid values at all sites as the specimens originating from those sites, which indicates a high potential for trophic plasticity in the case of a change in food sources, which makes this species competitive and resistant to eutrophication.  相似文献   

13.
The prevention and treatment of biofilm-mediated infections remains an unmet clinical need for medical devices. With the increasing prevalence of antibiotic-resistant infections, it is important that novel approaches are developed to prevent biofilms forming on implantable medical devices. This study presents a versatile and simple polydopamine surface coating technique for medical devices, using a new class of antibiotics—antimicrobial peptidomimetics. Their unique mechanism of action primes them for activity against antibiotic-resistant bacteria and makes them suitable for covalent attachment to medical devices. This study assesses the anti-biofilm activity of peptidomimetics, characterises the surface chemistry of peptidomimetic coatings, quantifies the antibacterial activity of coated surfaces and assesses the biocompatibility of these coated materials. X-ray photoelectron spectroscopy and water contact angle measurements were used to confirm the chemical modification of coated surfaces. The antibacterial activity of surfaces was quantified for S. aureus, E. coli and P. aeruginosa, with all peptidomimetic coatings showing the complete eradication of S. aureus on surfaces and variable activity for Gram-negative bacteria. Scanning electron microscopy confirmed the membrane disruption mechanism of peptidomimetic coatings against E. coli. Furthermore, peptidomimetic surfaces did not lyse red blood cells, which suggests these surfaces may be biocompatible with biological fluids such as blood. Overall, this study provides a simple and effective antibacterial coating strategy that can be applied to biomaterials to reduce biofilm-mediated infections.  相似文献   

14.
Self-polymerized dopamine was used to form a thin layer onto stainless steel (SS) and poly(ethylene terephthalate) (PET) sheets followed by covalent grafting of pentadecafluorooctanoyl chloride by esterification and amidation reactions. The surface functionalization was characterized at each step by contact angle measurements, X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). The anti-adhesive properties of native surfaces, polydopamine-coated surfaces and hydrophobic fluorinated surfaces were tested against Gram-negative (Pseudomonas aeruginosa) and Gram-positive bacteria (Listeria monocytogenes and Staphylococcus aureus). The results reveal an inhibition of bacteria growth towards Gram-negative bacteria on fluorinated surfaces. This work proposes a novel method to easily fluorinate in two steps both metallic and organic surfaces using “universal” polydopamine coating as a key step.  相似文献   

15.
We present contact angle measurements of water on single-crystal rutile TiO2 (1 1 0) surfaces, exposed to ambient air, or protected in dry air. Our measurements indicate that the surfaces exposed to ambient air are hydrophobic, with a contact angle of θ = 61(5)°. However, the well-protected dry surface also exhibits some hydrophobic tendency, with θ = 32(5)°. It is known that UV irradiation transforms both surfaces superhydrophilic, with θ = 0° [R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, T. Watanabe, Nature 388 (1997) 431-432]. We also present preliminary X-ray crystal truncation rod measurements on the hydrophobic TiO2 (1 1 0) surface, and of the effect of UV illumination on the surface.  相似文献   

16.
Q. Li  V. Rudolph 《Powder Technology》2006,161(3):248-255
Van der Waals forces often dominate interactions and adhesion between fine particles and, in turn, decisively influence the bulk behaviour of powders. However, so far there is no effective means to characterize the adhesive behaviour of such particles. A complication is that most powder particles have rough surfaces, and it is the asperities on the surfaces that touch, confounding the actual surface that is in contact. Conventional approaches using surface energy provide limited information regarding adhesion, and pull-off forces measured through atomic force microscope (AFM) are highly variable and difficult to interpret. In this paper we develop a model which combines the Rumpf-Rabinovich and the JKR-DMT theories to account simultaneously for the effects of surface roughness and deformation on adhesion. This is applied to a ‘characteristic asperity’ which may be easily obtained from AFM measurements. The concept of adhesiveness, a material property reflecting the influences of elastic deformability, surface roughness, and interfacial surface energy, is introduced as an efficient and quantitative measure of the adhering tendency of a powder. Furthermore, a novel concept of specific adhesiveness is proposed as a convenient tool for characterizing and benchmarking solid materials. This paper provides an example to illustrate the use of the proposed theories.  相似文献   

17.
Bacterial colonization and transmission via surfaces increase the risk of infection. In this study, we design and employ novel adhesive antimicrobial peptides to prevent bacterial contamination of surfaces. Repeats of 3,4-dihydroxy-L-phenylalanine (DOPA) were added to the C-terminus of NKC, a potent synthetic antimicrobial peptide, and the adhesiveness and antibacterial properties of the resulting peptides are evaluated. The peptide is successfully immobilized on polystyrene, titanium, and polydimethylsiloxane surfaces within 10 min in a one-step coating process with no prior surface functionalization. The antibacterial effectiveness of the NKC-DOPA5-coated polystyrene, titanium, and polydimethylsiloxane surfaces is confirmed by complete inhibition of the growth of Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus within 2 h. The stability of the peptide coated on the substrate surface is maintained for 84 days, as confirmed by its bactericidal activity. Additionally, the NKC-DOPA5-coated polystyrene, titanium, and polydimethylsiloxane surfaces show no cytotoxicity toward the human keratinocyte cell line HaCaT. The antimicrobial properties of the peptide-coated surfaces are confirmed in a subcutaneous implantation animal model. The adhesive antimicrobial peptide developed in this study exhibits potential as an antimicrobial surface-coating agent for efficiently killing a broad spectrum of bacteria on contact.  相似文献   

18.
A facile post-deposition plasma treatment was developed to tune the wetting behavior of Yb2O3 coatings deposited via the solution precursor plasma spray process. The as-deposited coatings exhibited the lotus effect after vacuum treatment, with a water contact angle of ∼162° and a roll-off angle of ∼5°, due to the hierarchical columnar microstructure. When the plasma torch was scanned over the coatings as a post-deposition treatment, the rough top surfaces of the columns present in the as-deposited coatings became smooth, and the coatings then exhibited the petal effect, with a water contact angle of ∼150° to ∼130° and high, tunable adhesion to water. Analysis of the surface compositions showed that after vacuum treatment hydrocarbon adsorption on the as-deposited coatings and plasma-treated coatings was very similar. A mathematical model correlating surface structures with wetting behaviors was developed to elucidate the transition from the lotus effect to the petal effect.  相似文献   

19.
Peri-implant infections from bacterial biofilms on artificial surfaces are a common threat to all medical implants. They are a handicap for the patient and can lead to implant failure or even life-threatening complications. New implant surfaces have to be developed to reduce biofilm formation and to improve the long-term prognosis of medical implants. The aim of this study was (1) to develop a new method to test the antibacterial efficacy of implant surfaces by direct surface contact and (2) to elucidate whether an innovative antimicrobial copolymer coating of 4-vinyl-N-hexylpyridinium bromide and dimethyl(2-methacryloyloxyethyl) phosphonate (VP:DMMEP 30:70) on titanium is able to reduce the attachment of bacteria prevalent in peri-implant infections. With a new in vitro model with semi-coated titanium discs, we were able to show a dramatic reduction in the adhesion of various pathogenic bacteria (Streptococcus sanguinis, Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis), completely independently of effects caused by soluble materials. In contrast, soft tissue cells (human gingival or dermis fibroblasts) were less affected by the same coating, despite a moderate reduction in initial adhesion of gingival fibroblasts. These data confirm the hypothesis that VP:DMMEP 30:70 is a promising antibacterial copolymer that may be of use in several clinical applications.  相似文献   

20.
Prosthetic implants are widely used in dentistry and orthopedics and, as a result, infections can occur which cause their removal. Therefore, it is essential to propose methods of eradicating the bacteria that remain on the prosthesis during treatment. For this purpose, it is necessary to develop surfaces whose antibacterial activity can be controlled. Herein, we designed innovative and smart phosphonium self-assembled monolayer (SAM) interfaces that can be electrically activated on demand for controlling bacterial contaminations on solid surfaces. Upon electroactivation with a low potential (0.2 V for 60 min., conditions determined through a DOE), a successful stamping out of Gram-positive and Gram-negative bacterial strains was obtained with SAM-modified titanium surfaces, effectively killing 95% of Staphylococcus aureus and 90% Klebsiella pneumoniae. More importantly, no toxicity towards eukaryotic cells was observed which further enhances the biocompatible character of these novel surfaces for further implementation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号