首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 57 毫秒
1.
电力电缆用可交联半导电屏蔽料   总被引:3,自引:0,他引:3  
研究了由乙烯-醋酸乙烯(EVA)共聚物,炭黑,加工助剂等配制的电力电缆用可交联半导电屏蔽料,采用DCP为交联剂,TAIC(三烯丙基异氰尿酸酯)为交联助剂,石蜡为加工助剂,考察了炭黑种类及用量,交联剂与助交联剂用量,加工助剂等对屏蔽料电学性能,力学性能和成缆工艺性能的影响,结果表明,两种炭黑并用有协同作用,屏蔽料具有良好的导电性能,加工性能和高的性能价格比,减少交联剂用量,添加助交联剂制得的屏蔽料成缆后与绝缘层具有良好的可离性。  相似文献   

2.
可交联半导电屏蔽电缆料技术开发现状   总被引:1,自引:0,他引:1  
伍佩芳 《兰化科技》1995,13(4):273-276
对电缆用可交联半导电屏蔽层的作用、导电机理和包复技术作了简单介绍,对国外专用料的技术开发作了综述,认为加速国内动力电缆工业发展必须尽快提高配混专用料的技术水平。  相似文献   

3.
电缆用半导电屏蔽料组分的选择   总被引:2,自引:0,他引:2  
对国外开发电缆用半导电屏蔽专用料所选用的基料、导电材料、交联剂、抗氧剂和加工助剂进行了综述。  相似文献   

4.
电缆用半导电屏蔽料开发进展   总被引:2,自引:0,他引:2  
蔡绪福  万洪澜 《化学世界》1994,35(6):287-292
本文概述了半导电屏蔽料的作用,分类及技术规范,分析了半导电屏蔽料存在的技术问题及其组成与性能的关系,综述了国内外半导电屏蔽料的开发进展。  相似文献   

5.
根据交联聚乙烯(PE)电缆用基础树脂的要求,确定了产品的技术指标及生产工艺,开发了交联PE电缆用树脂QLT17。与国内外同类树脂相比,QLT17具有优良的物理性能和加丁性能,拉伸强度为13.8MPa,断裂伸长率为653%,介电常数(50Hz)为2.2。其关键指标杂质含量符合电力电缆绝缘料使用要求:0.12~0.25mm的杂质为5个/kg,大于0.26mm的杂质为0。推广应用表明,QLT17是一种性能优异的交联PE电缆用基础树脂。  相似文献   

6.
可剥离交联型EVA半导电绝缘屏蔽料的研制   总被引:2,自引:0,他引:2  
采用混炼方法研究了基础树脂、导电材料、交联剂、润滑剂、抗氧剂对可剥离交联型EVA半导电绝缘屏蔽料性能的影响,确立乙烯-醋酸乙烯共聚物(EVA)半导电绝缘屏蔽料配方(质量份数):EVA为100份,导电炭黑为60份,交联剂为2.1份,润滑剂为8.0份,抗氧剂为0.8份.对产物性能的表征表明,该绝缘屏蔽料20 ℃体积电阻率为52.6 Ω·cm,剥离强度为18.4 N/cm,热延伸试验载荷下伸长率为75%.  相似文献   

7.
唐昆 《炭黑译丛》2006,(10):9-18
本发明涉及含半导电屏蔽材料和湿固化绝缘材料的电力电缆,特别是含有粘性半导电屏蔽内层的电力电缆。 标准电力电缆的电缆芯线通常含有一个或多个导体,电缆芯线周围被多层聚合材料包围,这些材料包括第一半导电屏蔽内层(导体或绞线束屏蔽层)、绝缘层、第二半导电屏蔽层(绝缘屏蔽或外半导体层)、金属带或金属线屏蔽层及保护套。半导体屏蔽内层通常都是粘合而成的。半导体屏蔽外层可粘结在绝缘体上也可放在其上。湿化密封材料也可加入包围层中。  相似文献   

8.
胡爱精  杨树声  王汝莹 《橡胶工业》1995,42(11):667-669
采煤机(屏蔽型)电缆的半导电橡胶屏蔽层的胶料配方为:乙烯-醋酸乙烯酯共聚物(EVA)90;氯化聚乙烯(CPE)10;过氧化二异丙苯1-3;三聚异氰酸三烯丙酯2-5;20#机油15.0;固体石蜡8.0;环氧酯类增塑剂适量;乙炔炭黑40-60;高耐磨炭黑30;轻质碳酸钙适量:抗氧剂300#1.5;硬脂酸盐1.0,含胶率45%。EVA.CPE在开炼机上共混,胶料混炼可在开炼机上或密炼机中进行,本胶料与线芯绝缘胶料是一次挤出成型进入硫化管中硫化的。胶料及成品性能均满足GB7594—87和GB12972.1—91标准。  相似文献   

9.
系统介绍了可剥离绝缘屏蔽料的研制过程、试验配方以及实施过程,并阐述了产品的主要性能指标。  相似文献   

10.
孙鑫  白佳丽 《塑料助剂》2023,(4):49-51+58
回顾我国高压直流(HVDC)电缆的发展历史,介绍了高压直流电缆用交联聚乙烯材料的应用现状;通过分析交联聚乙烯绝缘材料的性能,发现目前高压直流电缆用聚乙烯在电气性能、机械性能等方面具有显著优势,但在空间电荷效应、温度梯度效应及老化性能上仍存在着不足之处;从消除空间电荷影响、提高材料纯度的角度提出开发我国国产化高压直流电缆交联聚乙烯材料的改进思路,为我国高压直流电缆用绝缘材料的进步提供理论依据和现实参考。  相似文献   

11.
矿用电缆半导电屏蔽层胶料的研制   总被引:1,自引:0,他引:1       下载免费PDF全文
简介了矿用电缆半导电屏蔽层胶料的研制。NBR半导电屏蔽层胶料配方为:NBR2707 100;导电填料 100;氧化锌 10.0;促进剂TMTD 4.0;邻苯二甲酸二辛酯(DOP) 23.0;其余配合剂 13.0,合计250.0。乙烯醋酸惭烯酯橡胶(EVA)半导电屏蔽层胶料配方为:EVA(Levapren560) 100;导电填料 100;过氧化二异丙苯 3.0;三烯丙基异氰酸酯 3.0;DOP/邻  相似文献   

12.
Water treeing is one of the main deterioration phenomena observed in the polymeric insulation of extruded crosslinked polyethylene (XLPE) cables, which can affect the service life of power cables. In this work, we investigated the effect of grafting of a silane (vinyl trimethoxysilane, VTMS) on the resistance of XLPE to water treeing. A series of water‐treeing tests, the mechanical and dielectric measurements indicated that the silane‐grafting could significantly improve the water tree resistance of the conventional XLPE cable insulation with little influences on its dielectric properties, e.g., the dielectric breakdown strength, dielectric constant and loss tangent, and its mechanical performance. It was found that there exists an optimum value of VTMS concentration (about 0.6 phr) corresponding to the minimum water tree length. The water tree resistance mechanism of silane‐grafted XLPE was proposed on the basis of the process of silane hydrolysis and crosslinking. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

13.
通过研究了以HDPE为基料生产高速通信电缆用绝缘料的分子量分布、流变性能和加工性能,在聚合时通过改变分子量调解剂量和工艺条件,改善其分子量分布使其具有双峰结构从而改善加工性能,结果表明:该产品具有优异的力学性能、介电性能、各项指标达到了邮电部YD/T760-1995标准;同时具有良好的加工性能,能够满足高速挤出的要求。  相似文献   

14.
以汽车用电缆料为试验目标,研究了增塑剂、引发剂、助交联剂、热塑性聚氨酯(TPU)的用量对PVC/TPU体系硬度、力学性能、热延伸率的影响,并考察了其耐磨性能和耐老化性能。结果表明:①在助交联剂TAIC存在下,引发剂DCP可引发PVC/TPU体系的交联反应,并且随着DCP、TPU用量的增加,交联度增大。②PVC/TPU交联电缆料的优化配方为:PVC 100份,钙锌稳定剂8份,TO TM 50份,TAIC 3份,DCP 0.2份,TPU 30份,抗氧剂0.8份,其他助剂适量;采用该配方能生产出合格的汽车用电缆料。  相似文献   

15.
The type of matrix resin of the semi-conductive shielding layer directly affects the thermal aging characteristics of the semi-conductive shielding layer and the high-voltage cable. In this paper, ethylene vinyl acetate (EVA), ethylene ethyl acrylate (EEA), and ethylene butyl acrylate (EBA) resins were used as matrix to prepare carbon black (CB) + EVA, CB + EEA, and CB + EBA shielding materials. The law of physicochemical, electrical, and mechanical properties of different matrix resin shielding materials with aging time was studied, and the influence mechanism of matrix resin on the aging characteristics of shielding materials was analyzed. The results show: with the increase of aging time, the crystallization area and the number of functional groups of the three shielding materials decreased to varying degrees. The number of functional groups in CB + EBA shielding materials decreased evenly with aging time, but that of CB + EVA and CB + EEA shielding materials changed significantly after 7 days of aging. After 60 days of aging, the crystallization area of CB + EBA shielding material changed slightly, but that of CB + EVA and CB + EEA shielding material decrease significantly. The electrical properties of the three shielding materials showed different decreasing trend with aging time. When the aging time is 7 days, the positive temperature coefficient (PTC) effect of CB + EEA shielding material decreases obviously. When the aging time is 30 days, the resistivity of CB + EVA and CB + EEA shielding material increases slowly (9 Ω cm–12 Ω cm) with the increase of temperature. When the aging time is 60 days, the resistivity of CB + EBA shielding material decreases obviously, and the PTC effect weakens obviously. Taking the mechanical properties of the shielding material as reference, the rapid deterioration stage of the mechanical properties of the three shielding materials is different. The CB + EVA and CB + EEA shielding material rapid deterioration time is 0–7 days, and the tensile strength and elongation of the shielding material are greatly reduced. The rapid deterioration stage of CB + EBA shielding material is 7–30 days, and the tensile strength and elongation decrease from 24.38 MPa and 499.5% to 14 MPa and 155.7%, respectively. This work can provide data support for the selection of matrix resin of shielding material and the fault analysis of shielding layer of high voltage cable.  相似文献   

16.
Depending on the morphology of the material and applied voltage frequency, three kinds of electrical trees can exist in cross‐linked polyethylene (XLPE) cable insulation, which are conducting, non‐conducting, and mixed trees with different growth mechanisms. It is suggested that when the needle is inserted into large spherulites, conducting trees will form in those spherulites; when it is inserted among spherulites, non‐conducting trees will appear along the boundaries of spherulites. Frequency will accelerate the growth of non‐conducting trees but have little influence on the initiation and growth processes of conducting trees. If the initiation process of non‐conducting trees is too difficult, they will grow into mixed trees. Finally, it is concluded that the space charge limited tiny breakdown around the tips of electrical trees is responsible for the propagation process of conducting trees; on the other hand, fast expansion occurs due to local high temperature and pressure along the boundaries, partial discharge in electrical tree paths and charge recombination, etc., which are the main reason for the growth of non‐conducting trees. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

17.
介绍了齐鲁石油化工股份有限公司生产的高密度聚乙烯通信电缆绝缘料AHJ-01的开发。QHJ-01经物理机械性能和介电性能检测,满足邮电部《市内通信电缆用聚烯烃绝缘料》(YD/T760-95)的要求,并经过多家电缆生产厂的应用表明:QHJ-01与目前国际上较佳的绝缘料产品的综合性能相当。  相似文献   

18.
硅烷交联聚乙烯电力电缆绝缘料的研制   总被引:3,自引:0,他引:3  
采用两步法制备了硅烷交联聚乙烯(PE)电力电缆绝缘料。以双螺杆挤出机为反应器,以低密度聚乙烯(LDPE)和线型低密度聚乙烯(LLDPE)为基础树脂,考察了影响PE接枝交联的主要因素(如基础树脂的配比,交联剂的用量及种类,引发剂、抗氧剂的用量等),得出了具有良好性能的硅烷交联PE电力电缆绝缘料的配方(质量份数):LDPE为85.00phr,LLDPE为15.0H0phr,硅烷W为0.60phr,硅烷Q为1.40phr,引发剂为0.12phr,抗氧剂为0.20phr。  相似文献   

19.
分析了我国电力电缆行业现状及发展趋势,尤其是低密度聚乙烯电力电缆料市场,并探讨了开发电力电缆专用树脂的必要性和齐鲁石油化工公司开发电力电缆专用料的优势。  相似文献   

20.
介绍了无卤阻燃聚烯烃电缆料的应用现状(包括当前主要使用的几种聚烯烃基体材料).聚烯烃材料燃烧特性及阻燃机理,无卤电缆料阻燃剂的分类及应用特点,以及当前无卤阻燃电缆料的发展方向.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号