首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
CuCr1−xMgxO2 (x = 0, 0.03, 0.05, 0.07) thin films were prepared on sapphire substrates by sol-gel processing. The effect of Mg concentrations on the structural, morphological, electrical and optical properties was investigated. Highly transparent ≧70% Mg-doped CuCrO2 thin films with p-type conduction and semiconductor behavior were obtained. The microstructure of the systems was characterized by scanning electron microscopy and the roughness increased as the content of Mg increased. The photoluminescence spectra results indicated that it had a green luminescent emission peak at the 530 nm. In this paper, CuCr0.95Mg0.05O2 film has the lowest resistivity of 7.34 Ω cm with direct band gap of 3.11 eV. In order to investigate the conduction mechanism, the energy band of the CuCrO2 films is constructed based on the grain-boundary scattering.  相似文献   

2.
We synthesized CuAl1−xCoxO2 (x = 0.00-0.07) thin films by solid-state reaction from Cu2O and Al2O3 on a sapphire (0 0 1) substrate by a simple and cost-effective spin-on technique. X-ray diffraction and Raman spectroscopy confirm the formation of single impurity-free delafossite CuAlO2 structure for all the compositions. We observed diamagnetism for pristine CuAlO2 and ferromagnetism for Co-doped CuAlO2 at room temperature. Specially, the coercivity (Hc) and saturation magnetization (Ms) are significantly enhanced with Co composition from 1 at.% to 5 at.% but show the reverse tendency with higher Co content.  相似文献   

3.
Lanthanum doped Bi3TiNbO9 thin films (LBTN-x, La3+ contents x = 5%, 15%, 25% and 35 mol.%) with layered perovskite structure were fabricated on fused silica by pulsed laser deposition method. Their linear and nonlinear optical properties were studied by transmittance measurement and Z-Scan method. All films exhibit good transmittance (>55%) in visible region. For lanthanum doping content are x = 5%, 15% and 25 mol.%, the nonlinear absorption coefficient of LBTN-x thin films increases with the La3+ content, then it drops down at x = 35 mol.% when the content of La3+ in (Bi2O2)2+ layers is high enough to aggravate the orthorhombic distortion of the octahedra. We found that, 25 mol.% is the optimal La3+ content for LBTN-x thin films to have the largest nonlinear absorption coefficient making the LBTN-x film a promising candidate for absorbing-type optical device applications.  相似文献   

4.
Mg-doped CaCu3?xMgxTi4O12 (x=0, 0.05, 0.1, 0.15, 0.2, at.%) thin films were prepared by a modified sol?gel method. A comparative study on the microstructure and electrical properties of Mg-doped CaCu3Ti4O12 (CCTO) thin films was carried out. The grain sizes of the Mg-doped CCTO thin films were smaller in comparison to the undoped CCTO films. Furthermore, compared to undoped CCTO films, Mg-doped CCTO thin films obtained higher dielectric constant as well as excellent frequency stability. Meanwhile, Mg doping could reduce the dielectric loss of CCTO thin films in the frequency range of 104?106 Hz. The results showed that the Mg-doped CCTO thin films had the better electrical characteristics compared with the undoped CCTO films. The nonlinear coefficient of Mg-doped CCTO thin films at x=0.15 and x=0.1 was improved to 7.4 and 6.0, respectively.  相似文献   

5.
The GdBaCo2O5+δ-Sm0.2Ce0.8O1.9 (GBCO-SDC) composite cathodes were prepared, their thermogravimetric measurement, thermal expansion coefficient (TEC), electrical conductivity and electrochemical performance were studied as function of temperature and SDC content. The adjustment of TEC to electrolyte, which is one of the main problems of GBCO cathode, could be achieved to lower TEC values with more SDC addition, while maintaining reasonable high electrical conductivity. By means of DC polarization and AC impedance spectroscopy, the electrochemical performance of GBCO-SDC composite cathodes on SDC electrolyte was examined. Results indicated that the proper addition of SDC could improve the performance of GBCO cathode. The optimum content of SDC in the composite cathodes was 40 wt.% with the polarization resistance (Rp) of 1.39 Ω cm2 at 500 °C, which was significantly lower than that of pure GBCO cathode (7.26 Ω cm2).  相似文献   

6.
Bi2SexTe3−x crystals with various x values were grown by Bridgman method. The electrical conductivity, σ, was found to decrease with increasing Se content. The highest σ of 1.6 × 105 S m−1 at room temperature was reached at x = 0.12 with a growth rate of 0.8 mm h−1. The Seebeck coefficient, S, was less dependent on Se content, all with positive values showing p-type characteristics, and the highest S was measured to be 240 μV K−1 at x = 0.24. The lowest thermal conductivity, κ, was 0.7 W m−1 K−1 at x = 0.36. The electronic part of κ, κel, showed a decrease with increasing Se content, which implies that the hole concentration as the main carriers was reduced by the addition of Se. The highest dimensionless figure of merit, ZT, at room temperature was 1.2 at x = 0.36, which is attributed to the combination of a rather high electrical conductivity and Seebeck coefficient and low thermal conductivity.  相似文献   

7.
The effect of different mild post-annealing treatments in air, at 270 °C, for 4-6 min, on the optical, electrical, structural and chemical properties of copper sulphide (CuxS) thin films deposited at room temperature are investigated. CuxS films, 70 nm thick, are deposited on glass substrates by vacuum thermal evaporation from a Cu2S:S (50:50 wt.%) sulphur rich powder mixture. The as-deposited highly conductive crystalline CuS (covellite) films show high carrier concentration (∼1022 cm−3), low electrical resistivity (∼10−4 Ω cm) and inconclusive p-type conduction. After the mild post-annealing, these films display increasing values of resistivity (∼10−3 to ∼10−2 Ω cm) with annealing time and exhibit conclusive p-type conduction. An increase of copper content in CuxS phases towards the semiconductive Cu2S (chalcocite) compound with annealing time is reported, due to re-evaporation of sulphur from the films. However, the latter stoichiometry was not obtained, which indicates the presence of vacancies in the Cu lattice. In the most resistive films a Cu2O phase is also observed, diminishing the amount of available copper to combine with sulphur, and therefore the highest values of optical transmittance are reached (65%). The appearance on the surface of amorphous sulphates with annealing time increase is also detected as a consequence of sulphur oxidation and replacement of sulphur with oxygen. All annealed films are copper deficient in regards to the stoichiometric Cu2S and exhibit stable p-type conductivity.  相似文献   

8.
In this work, phase pure Cr2AlC and impure Cr2AlC with Cr7C3 have been fabricated to investigate the mechanical, thermal, and electrical properties. The thermal expansion coefficient is determined as 1.25 × 10−5 K−1 in the temperature range of 25-1200 °C. The thermal conductivity of the Cr2AlC is 15.73 W/m K when it is measured at 200 °C. With increasing temperature from 25 °C to 900 °C, the electrical conductivity of Cr2AlC decreases from 1.8 × 106 Ω−1 m−1 to 5.6 × 105 Ω−1 m−1. For the impure phase of Cr7C3, it has a strengthening and embrittlement effect on the bulk Cr2AlC. And the Cr2AlC with Cr7C3 would result in a lower high-temperature thermal expansion coefficient, thermal conductivity, specific heat capacity and electrical conductivity.  相似文献   

9.
The samples of Cu1−xPtxFeO2 (0 ≤ x ≤ 0.05) delafossite were synthesized by solid state reaction method for studying thermoelectric properties. The properties of Seebeck coefficient, electrical conductivity and thermal conductivity were measured in the high temperature ranging from 300 to 960 K. The results of Seebeck coefficient, electrical conductivity and power factor were increased with increasing Pt substitution and temperature. The thermal conductivity was decreased from 5.8 to 3.5 W/mK with increasing the temperature from 300 to 960 K. An important results, the highest value of power factor and ZT is 2.0 × 10−4 W/mK2 and 0.05, respectively, for x = 0.05 at 960 K.  相似文献   

10.
We have prepared polycrystalline single-phase ACo2+xRu4−xO11 (A = Sr, Ba; 0 ≤ x ≤ 0.5) using the ceramic method and we have studied their structure, electrical resistivity and Seebeck coefficient, in order to estimate their power factor (P.F.). These layered compounds show values of electrical resistivity of the order of 10−5 Ωm and their Seebeck coefficients are positive and range from 1 μV K−1 (T = 100 K) to 20 μV K−1 (T = 450 K). The maximum power factor at room temperature is displayed by BaCo2Ru4O11 (P.F.: 0.20 μW K−2 cm−1), value that is comparable to that shown by compounds such as SrRuO3 and Sr6Co5O15.  相似文献   

11.
A series of K doped Zn1−xMgxO thin films have been prepared by pulsed laser deposition (PLD). Hall-effect measurements indicate that the films exhibit stable p-type behavior with duration of at least six months. The band gap of the K doped Zn1−xMgxO films undergoes a blueshift due to the Mg incorporation. However, photoluminescence (PL) results reveal that the crystallinity decreased with the increasing of Mg content. The fabricated K doped p-type Zn0.95Mg0.05O thin film exhibits good electrical properties, with resistivity of 15.21 Ω cm and hole concentration of 5.54 × 1018 cm−3. Furthermore, a simple ZnO-based p-n heterojunction was prepared by deposition of a K-doped p-type Zn0.95Mg0.05O layer on Ga-doped n-type ZnO thin film with low resistivity. The p-n diode heterostructure exhibits typical rectification behavior of p-n junctions.  相似文献   

12.
Nanoparticles of ZnFe2O4 with grain size of 30 nm have been synthesized via sol-gel auto combustion method and characterized using DSC (differential scanning calorimetry), XRD (X-ray diffraction), SEM (scanning electron microscopy), EDAX (energy dispersive X-ray analysis), FTIR (Fourier transform infrared spectroscopy), VSM (vibrating sample magnetometer) and Ac-electrical conductivity measurement setup. Structural analysis using XRD and FTIR show the formation of spinel structure in nano ZnFe2O4 particles. The cation distribution in the sample has been estimated theoretically and the results show that as-prepared nanoparticles of ZnFe2O4 have partially inverted ionic distribution in comparison with that of bulk zinc ferrite. Results from EDAX indicate the ratio of Fe:Zn as close to 2:1. The presence of a weak ferrimagnetic phase for nano ZnFe2O4 at room temperature has been established from its hysteresis behavior. Redistribution of cations occurring at nano-regime and surface spin canting of nanoparticles of ZnFe2O4 are expected to be responsible for the presence of magnetic ordering in nano ZnFe2O4. The Curie temperature of nano ZnFe2O4 determined from magnetization versus temperature measurement is equal to 375 °C. The electrical conductivity of the present ZnFe2O4 at a frequency of 100 kHz at room temperature is observed to be 2.11 × 10−8 Ω−1 cm−1 which is four orders lesser in magnitude than the value of bulk ZnFe2O4. Overall conductivity response with respect to temperature and frequency confirm that ZnFe2O4 tends to become more dielectric in the nano-regime.  相似文献   

13.
Nanocrystalline samarium doped ceria electrolyte [Ce0.9Sm0.1O1.95] was synthesized by citrate gel combustion technique involving mixtures of cerium nitrate oxidizer (O) and citric acid fuel (F) taken in the ratio of O/F = 1. The as-combusted precursors were calcined at 700 °C/2 h to obtain fully crystalline ceria nano particles. It was further made into cylindrical pellets by compaction and sintered at 1200 °C with different soaking periods of 2, 4 and 6 h. The sintered ceria was characterized for the microstructures, electrical conductivity, thermal conductivity and thermal diffusivity properties. In addition, the combustion derived ceria powder was also analysed for the crystallinity, BET surface area, particle size and powder morphology. Sintered ceria samples attained nearly 98% of the theoretical density at 1200 °C/6 h. The sintered microstructures exhibit dense ceria grains of size less than 500 nm. The electrical conductivity measurements showed the conductivity value of the order of 10−2 S cm−1 at 600 °C with activation energy of 0.84 eV between the temperatures 100 and 650 °C for ceria samples sintered at 1200 °C for 6 h. The room temperature thermal diffusivity and thermal conductivity values were determined as 0.5 × 10−6 m2 s−1 and 1.2 W m−1 K−1, respectively.  相似文献   

14.
The thermal conductivities of [(ZrO2)1−x(CeO2)x]0.92(Y2O3)0.08 (0 ? x ? 1) solid solutions are studied in this paper. The incorporation of ZrO2 and CeO2 in the solid solution decreases the thermal conductivity compared with their end members (YSZ and YDC). The thermal conductivities of the solid solutions show clearly different temperature dependences in the ZrO2-rich (0 ? x ? 0.5) region and in the CeO2-rich region (0.5 ? x ? 1). The composition and the temperature dependence of the thermal conductivities are discussed based on established phonon scattering theories. We have concluded that the composition dependence of the thermal conductivity of this system is mainly controlled by the mass difference between Zr4+ and Ce4+, while the thermal conductivity-temperature relationship is dominated by the randomness of the defect distribution.  相似文献   

15.
Ag-doped Ca3Co4O9 thin films with nominal composition of Ca3−xAgxCo4O9 (x = 0∼0.4) have been prepared on sapphire (0 0 0 1) substrates by pulsed laser deposition (PLD). Structural characterizations and surface chemical states analysis have shown that Ag substitution for Ca in the thin films can be achieved with doping amount of x ≤ 0.15; while x > 0.15, excessive Ag was found as isolated and metallic species, resulting in composite structure. Based on the perfect c-axis orientation of the thin films, Ag-doping has been found to facilitate a remarkable decrease in the in-plane electrical resistivity. However, if doped beyond the substitution limit, excessive Ag was observed to severely reduce the Seebeck coefficient. Through carrier concentration adjustment by Ag-substitution, power factor of the Ag-Ca3Co4O9 thin films could reach 0.73 mW m−1 K−2 at around 700 K, which was about 16% higher than that of the pure Ca3Co4O9 thin film.  相似文献   

16.
The dielectric properties of Mg substituted Ni-Li spinel ferrites synthesized by sol-gel auto combustion process have been studied using impedance measurements in the frequency range from 10 Hz to 10 MHz and in the temperature range from 310 K to 473 K. The effect of frequency, temperature and composition on dielectric constant (?′), dielectric loss (tan δ) and conductivity (σ) has been discussed in terms of hopping of charge carriers between Fe2+ and Fe3+ ions. The electrical modulus formulism has been employed to study the relaxation dynamics of charge carriers and the results indicate the presence of non-Debye type of relaxation in the present ferrites. Similar values of activation energies for dc conduction (Edc) and for conductivity relaxation (EM″) reveal that the mechanisms of electrical conduction and dielectric polarization are same in these ferrites. A single ‘master curve’ for normalized plots of all the modulus isotherms observed for a given composition indicates the temperature independence of dynamical process for charge carriers. The saturation magnetization and coercivity have been calculated from the hysteresis loop measurements and show striking dependence on the composition.  相似文献   

17.
Filtered vacuum (cathodic) arc deposition (FVAD, FCVD) of metallic and ceramic thin films at low substrate temperature (50-400 °C) is realized by magnetically directing vacuum arc produced, highly ionized, and energetic plasma beam onto substrates, obtaining high quality coatings at high deposition rates. The plasma beam is magnetically filtered to remove macroparticles that are also produced by the arc. The deposited films are usually characterized by their good optical quality and high adhesion to the substrate. Transparent and electrically conducting (TCO) thin films of ZnO, SnO2, In2O3:Sn (ITO), ZnO:Al (AZO), ZnO:Ga, ZnO:Sb, ZnO:Mg and several types of zinc-stannate oxides (ZnSnO3, Zn2SnO4), which could be used in solar cells, optoelectronic devices, and as gas sensors, have been successfully deposited by FVAD using pure or alloyed zinc cathodes. The oxides are obtained by operating the system with oxygen background at low pressure. Post-deposition treatment has also been applied to improve the properties of TCO films.The deposition rate of FVAD ZnO and ZnO:M thin films, where M is a doping or alloying metal, is in the range of 0.2-15 nm/s. The films are generally nonstoichiometric, polycrystalline n-type semiconductors. In most cases, ZnO films have a wurtzite structure. FVAD of p-type ZnO has also been achieved by Sb doping. The electrical conductivity of as-deposited n-type thin ZnO film is in the range 0.2-6 × 10− 5 Ω m, carrier electron density is 1023-2 × 1026 m− 3, and electron mobility is in the range 10-40 cm2/V s, depending on the deposition parameters: arc current, oxygen pressure, substrate bias, and substrate temperature. As the energy band gap of FVAD ZnO films is ∼ 3.3 eV and its extinction coefficient (k) in the visible and near-IR range is smaller than 0.02, the optical transmission of 500 nm thick ZnO film is ∼ 0.90.  相似文献   

18.
Y2O3 thin films were prepared by rf-sputtering under various sputtering pressures at room temperature. Spectroscopic ellipsometer, X-ray diffraction and semiconductor parameter analyzer were used to characterize the studied films. The results show the crystallinity and leakage current density of the films improved with decreasing sputtering pressure. The effects of post-metallization annealing (PMA) on optical, structural and electrical properties of the films were also evaluated. It is found that PMA can significantly enhance the electrical performance of Y2O3 film, and the lowest leakage current is found to be 1.54 × 10−8 A/cm2 at 1 MV/cm for the samples treated at 350 °C for 30 min. The leakage current mechanisms were discussed as well, which reveals that space charge limited current dominates the as-deposited films while Schottky mechanism describes the PMA treated ones well.  相似文献   

19.
High-quality uniform SnO2 thin films were successfully prepared by pulsed-spray evaporation chemical vapor deposition (PSE-CVD) method, using a cost-efficient precursor of nBu2Sn(acac)2. The volatility and stability of nBu2Sn(acac)2 were studied through thermogravimetric-differential thermal (TG-DTA) analysis and mass spectrometry, indicating the good adaptability for the CVD process. Deposition of SnO2 films was made in the range of 250-450 °C to investigate the effect of substrate temperature on their structural and physical properties. The film growth activation energy changes from 66.5 kJ/mol in the range of 250-330 °C to 0 kJ/mol at 330-450 °C, suggesting the change of the rate-limiting step from surface kinetics to diffusion control. All films possess the rutile-type tetragonal structure, while a change of preferred orientation from (1 1 0) to (1 0 1) plane is observed upon the increase of the deposition temperature. The different variation of the nucleation and growth rates with the deposition temperature is proposed to explain the observed unusual change of crystallite size. A significant deterioration of the electrical conductivity was observed upon the increase of the deposition temperature, which was tentatively attributed to the non-specific decomposition of the precursor at high temperature leading to carbon contamination. Optical measurements show transparencies above 80% in the visible spectral range for all films, while band gap energy increases from 4.02 eV to 4.08 eV when the deposition temperature was raised from 250 °C to 450 °C.  相似文献   

20.
Niobium-doped titania (TNO) films of various Nb content were deposited on glass and silicon substrates by reactive co-sputtering of Ti and Nb metal targets. Nb content in the TNO films was varied from 0 to ∼13 at.% (atomic percent), corresponding to Ti1−xNbxO2 with x = 0-0.52, by modulating the Nb target power from 0 to 150 W (Watts). The influence of ion bombardment on the TNO films was investigated by applying an RF substrate bias from 0 to 25 W. The as-deposited TNO films were all amorphous and insulating, but after annealing at 600 °C for 1 h in hydrogen, they became crystalline and conductive. The annealed films crystallized into either pure anatase or mixed anatase and rutile structures. The as-deposited and the annealed films were transparent, with an average transmittance above 70%. Anatase TNO film (Ti1−0.39Nb0.39O2) with Nb 9.7 at.% exhibited a dramatically reduced resistivity of 9.2 × 10−4 Ω cm, a carrier density of 6.6 × 1021 cm−3 and a carrier mobility around 1.0 cm2 V−1 s−1. In contrast, the mixed-phase Ti1−0.39Nb0.39O2 showed a higher resistivity of 1.2 × 10−1 Ω cm. This work demonstrates that the anatase phase, oxygen vacancies, and Nb dopants are all important factors in achieving high conductivities in TNO films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号