首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interior scales on PVC, lined ductile iron (LDI), unlined cast iron (UCI) and galvanized steel (G) were analyzed by XRD, RMS, and XPS after contact with varying water quality for 1 year. FeCO3, α-FeOOH, β-FeOOH, γ-Fe2O3, Fe3O4 were identified as primary UCI corrosion products. No FeCO3 was found on G. The order of Fe release was UCI > G ? LDI > PVC. For UCI, Fe release decreased as % Fe3O4 increased and as % Fe2O3 decreased in scale. Soluble Fe and FeCO3 transformation indicated FeCO3 solid was controlling Fe release. FeCO3 model and pilot data showed Fe increased as alkalinity and pH decreased.  相似文献   

2.
Partially amorphous Fe75Si15B10 coatings were prepared from nanostructured feedstock powders by using high velocity oxy-fuel spraying. Scanning electron microscopy, X-ray diffraction, Vickers indenter and magnetic measurements were used to investigate microstructural, structural, microhardness and magnetic properties of the coatings. The Rietveld refinement of the X-ray diffraction patterns reveals the presence of an amorphous phase, nanocrystalline α-Fe(Si,B) structure having a lattice parameter close to 0.2841 nm and an average crystallite size of about 78-83 nm in addition to small amounts of Fe3O4 oxide (104 nm) and Fe2B boride (151 nm), which disappear completely with increasing coating thickness. Coercivity and microhardness values are 15.5 Oe and 478 Hv, respectively, for 84 μm thickness.  相似文献   

3.
Nano-particles of homogeneous solid solution between TiO2 and Fe2O3 (up to 10 mol%) have been prepared by mechanochemical milling of TiO2 and yellow Fe2O3/red Fe2O3/precipitated Fe (OH)3 using a planetary ball mill. Such novel solid solution cannot be prepared by conventional co-precipitation technique. A preliminary investigation of photocatalytic activity of mixed oxide (TiO2/Fe2O3) on photo-oxidation of different organic dyes like Rhodamine B (RB), Methyl orange (MO), Thymol blue (TB) and Bromocresol green (BG) under visible light (300-W Xe lamp; λ > 420 nm) showed that TiO2 having 5 mol% of Fe2O3 (YFT1) is 3-5 times higher photoactive than that of P25 TiO2. The XRD result did not show the peaks assigned to the Fe components (for example Fe2O3, Fe3O4, FeO3, and Fe metal) on the external surface of the anatase structure in the Fe2O3/TiO2 attained through mechanochemical treatment. This meant that Fe components were well incorporated into the TiO2 anatase structure. The average crystallite size and particle size of YFT1 were found to be 12 nm and 30 ± 5 nm respectively measured from XRD and TEM conforming to nanodimensions. Together with the Fe component, they absorbed wavelength of above 387 nm. The band slightly shifted to the right without tail broadness, which was the UV absorption of Fe oxide in the Fe2O3/TiO2 particle attained through mechanochemical method. This meant that Fe components were well inserted into the framework of the TiO2 anatase structure. EPR and magnetic susceptibility show that Fe3+ is in low spin state corresponding to μB = 1.8 BM. The temperature variation of μB shows that Fe3+ is well separated from each other and does not have any antiferromagnetic or ferromagnetic interaction. The evidence of Fe3+ in TiO2/Fe2O3 alloy is also proved by a new method that is redox titration which is again support by the XPS spectrum.  相似文献   

4.
High silicon ductile iron was coated by hot-dipping into an Al molten bath. The oxidation behavior of the aluminized alloy and the bare substrate was studied in air at 750 °C. The results showed that the coating layers consisted of three layers, in the sequence of Al, Fe-Al intermetallic and Si pile-up layers from the external topcoat to the substrate. The intermetallic layer was composed of outer FeAl3 and inner Fe2Al5. The outer rod-shaped FeAl3 dispersed in the aluminum topcoat, while the inner tongue-like Fe2Al5 formed in the metallic layer becoming the major phase in the aluminide coating layer. Those three layers of aluminum, Fe2Al5 and silicon pile-up layer exhibited hardness of HV 50, HV 1100 and HV 450, respectively. In this study, when the as-coated specimens were examined, Fe-Al-Si compounds could not be found. But the silicon pile-up at the interface between the substrate and the Fe-Al intermetallic layer could be seen in all the as-coated specimens. The graphite nodules were noticed in the substrate. The presence of graphite nodules in the substrate might be markers of hot-dipping. After hot-dipping in Al all the specimens contained graphite nodules in the aluminide layer.The oxidized graphite nodules resulted in cracks propagating in aluminide coating. Even though graphite nodules meant the existence of crack in the aluminide coating, the high temperature oxidation experiments indicated that the aluminide coating could prevent the oxidation of substrate effectively even at 750 °C.  相似文献   

5.
Ceramic coating was prepared on Q235 carbon steel by plasma electrolytic oxidation (PEO). The microstructure of the coating including phase composition, surface and cross-section morphology were studied by X-ray diffraction (XRD), Fourier transform infrared spectroscope (FTIR) and scanning electron microscopy (SEM). The corrosion behavior of the coating was evaluated in 3.5% NaCl solution through electrochemical impedance spectra (EIS), potentiodynamic polarization and open-circuit potential (OCP) techniques. The bonding strength between Q235 carbon steel substrate and the ceramic coating was also tested. The results indicated that PEO coating is a composite coating composed of FeAl2O4 and Fe3O4. The coating surface is porous and the thickness is about 100 μm. The bonding strength of the coating is about 19 MPa. The corrosion tests showed that the corrosion resistance of Q235 carbon steel could be greatly improved with FeAl2O4-Fe3O4 composite coating on its surface.  相似文献   

6.
An easy synthesis route of magnetite (Fe3O4) nanopowder is developed by using thermal decomposition of Fe-urea complex ([Fe(CON2H4)6](NO3)3). The formation of Fe3O4 is confirmed from X-ray powder diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) measurements. The morphological properties and magnetic properties of the Fe3O4 are characterized by transmission electron microscopy (TEM) and magnetic measurements, respectively. By an increase in reaction temperature from 200 to 300 °C, the average crystallite size of the Fe3O4 nanopowder increases from 37 to 50 nm. Room temperature magnetization hysteresis curves show that the Fe3O4 nanopowder possesses ferrimagnetic characteristics. The saturation magnetization of the Fe3O4 nanopowder increases from 70.7 to 89.1 emu/g when the reaction temperature increases from 200 to 300 °C.  相似文献   

7.
The synthesis of mono-dispersed γ-Fe2O3 nanoparticles by mechanochemical processing was demonstrated for the first time, via the solid-state exchange reaction Fe2(SO4)3 + 3Na2CO3 → Fe2(CO3)3 + 3Na2SO4 → Fe2O3 + 3Na2SO4 + 3CO2(g) and subsequent heat treatment at 673 K. The nanoparticles had a volume-weighted mean diameter of 6 nm and a narrow size distribution with the standard deviation of 3 nm. The particles showed a superparamagnetic nature with the superparamagnetic blocking temperature of 56.6 K. The anisotropy constant was 6.0 × 106 erg/cm3, two orders of magnitude larger than the magnetocrystalline anisotropy constant of bulk γ-Fe2O3. The detailed analysis of the magnetic properties indicated that the γ-Fe2O3 nanoparticles had a core-shell structure, consisting of a ferrimagnetic core of ∼4 nm in diameter having a collinear spin configuration and a magnetically disordered shell of ∼1.2 nm in thickness.  相似文献   

8.
Quenched Fe-C materials with up to 0.875 wt.% C were examined in 8.5 M NaOH at 100 °C to better understand the effect of carbon on caustic stress corrosion cracking (SCC) of plain steels. Carbon at contents up to about 0.23 wt.% C accelerated anodic dissolution of iron, whereas at high contents it hindered corrosion and promoted the formation of magnetite. It is suggested that carbon particles on the corroding surface form confined regions with an increased concentration of H+ and HFeO2, thereby favouring the formation of Fe3O4. Intergranular SCC can be explained by preferred anodic dissolution of grain boundary material enriched in carbon.  相似文献   

9.
A thermodynamic model based on the ‘Macroscopic Atom’ approach is proposed to assess the effect of alloying element segregation on the adhesion of metallic coating on metallic substrate. The interfaces that occur in hot-dip galvanized steels are considered, which include: Zn/Fe, Zn/Fe2Al5, Zn/FeZn13, FeZn13/Fe2Al5, and Fe2Al5/Fe. The effect of the alloying element on the work of adhesion of these interfaces is investigated, which includes Mg, Al, Si, P, Ti, V, Cr, Mn, Fe, Ni, Zn, Nb, Mo, Sn and Bi. Among these elements, Bi, Sn and Mg are predicted to decrease the work of adhesion of the Zn/Fe interface, whereas P, Nb, Mo, V, Ti and Ni tend to enhance this adhesion. The effect of element M (M = Al, Si, Cr, Mn) is positive when it exists in the zinc coating or negative when it occurs in the iron substrate. Among these interfaces, the Fe2Al5/Fe interface with a value of 3.8 J m−2 is the strongest, whereas the Zn/FeZn13 interface with of a value of 1.7 J m−2 is the weakest. Delamination of the coating upon deformation is predicted to occur along the FeZn13/Fe2Al5 and Zn/Fe2Al5 interfaces. This agrees with microscopic observations of hot dip galvanized steel after tensile testing.  相似文献   

10.
Mesoporous magnetite (Fe3O4) was successfully synthesized on a large scale by direct pyrolysis of ferric nitrate-EG (EG = ethylene glycol) gel in a one-end closed horizontal tube furnace in the air without using any template, additions, and carrier gas. The as-synthesized mesoporous Fe3O4 were characterized by powder X-ray diffraction (XRD), infrared spectra (IR), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), Brunauer-Emmett-Teller (BET), Barrett-Joyner-Halenda (BJH), and thermal gravimetric analysis (TGA). Results from TEM showed that the as-obtained Fe3O4 has mesoporous structure formed by the loose agglomeration of nanoparticles with diameter of about 6 nm, which was also confirmed by small-angle XRD and nitrogen adsorption analysis. Furthermore, vibrating sample magnetometer (VSM) measurements indicated that the saturated magnetization of the as-obtained mesoporous Fe3O4 was ferromagnetic with the saturation magnetization (Ms) and coercivity (Hc) of 46 emu/g and 136 Oe, respectively. In addition, a possible growth mechanism of mesoporous Fe3O4 was also discussed.  相似文献   

11.
Laser cladding of the Fe3Al + TiB2/Al2O3 pre-placed alloy powder on Ti-6Al-4V alloy can form the Ti3Al/Fe3Al + TiB2/Al2O3 ceramic layer, which can greatly increase wear resistance of titanium alloy. In this study, the Ti3Al/Fe3Al + TiB2/Al2O3 ceramic layer has been researched by means of electron probe, X-ray diffraction, scanning electron microscope and micro-analyzer. In cladding process, Al2O3 can react with TiB2 leading to formation of amount of Ti3Al and B. This principle can be used to improve the Fe3Al + TiB2 laser cladded coating, it was found that with addition of Al2O3, the microstructure performance and micro-hardness of the coating was obviously improved due to the action of the Al-Ti-B system and hard phases.  相似文献   

12.
This work investigates the effects of 6.5 wt% Si addition and milling times on the structural and magnetic properties of Fe50Co50 powders. For this purpose, at first the elemental Fe and Co powders were milled for 10 h to produce Fe50Co50 alloy and then Si was added and the new product was milled again for different times. The microstructural and magnetic properties were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM). The results show that the minimum crystallite size of the as-milled powders (∼12 nm) has been achieved after introducing Si and milled for 8 h (total milling time of 18 h). Also an amount of 188 emu/g has been achieved for Ms. This amount of Ms is higher than most of those which have been already reported for Ms of different Fe-Si systems.  相似文献   

13.
Nanocrystalline Ni0.5Zn0.5Fe2O4 powders, synthesized by a combustion method are investigated by X-ray diffraction, vibrating sample magnetometry and Mössbauer spectroscopic techniques. We adopt a strategy to systematically control the particle sizes between 4 and 45 nm simply by changing the elemental stoichiometric coefficient, Φe, of the combustion mixture. Curie temperature of the superparamagnetic particles of size 4 nm is higher than that of the bulk particles. Interestingly, bigger particles (45 nm) show a comparable room temperature saturation magnetization and exceptionally very high Curie temperature of 833 K, when compared to that of the bulk Ni0.5Zn0.5Fe2O4 material (563 K).  相似文献   

14.
Superparamagnetic Fe3O4 nanoparticles were synthesized via a modified coprecipitation method, and were characterized with X-ray diffraction (XRD), vibrating sample magnetometer (VSM), Zeta potential and FT-IR, respectively. The influences of different kinds of surfactants (sodium dodecyl benzene sulfonate, polyethyleneglycol, oleic acid and dextran), temperatures and pH values on the grain size and properties were also investigated. In this method, Fe3+ was used as the only Fe source and partially reduced to Fe2+ by the reducing agent with precise content. The following reaction between Fe3+, Fe2+ and hydroxide radical brought pure Fe3O4 nanoparticles. The tiny fresh nanoparticles were coated in situ with surfactant under the action of sonication. Comparing with uncoated sample, the mean grain size and saturation magnetization of coated Fe3O4 nanoparticles decrease from 18.4 nm to 5.9-9.0 nm, and from 63.89 emu g−1 to 52-58 emu g−1 respectively. When oleic was used as the surfactant, the mean grain size of Fe3O4 nanoparticles firstly decreases with the increase of reaction temperature, but when the temperature is exceed to 80 °C, the continuous increase of temperature resulted in larger nanoparticles. the grain size decreases gradually with the increasing of pH values, and it remains unchanged when the PH value is up to 11. The saturation magnetization of as-prepared Fe3O4 nanoparticles always decreases with the fall of grain size.  相似文献   

15.
A ‘green’ hydrothermal process was used to prepare Fe3O4 film on bare Fe foil. X-ray diffraction and scanning electron microscopy (SEM) were employed to characterize the film. The results showed that the film was composed of fine particles with regularly truncated cubic morphology. Electrochemical properties of the coating were investigated by anodic polarization test and electrochemical impedance spectroscopy (EIS). Anodic polarization results indicated that compared with bare Fe foil, the corrosion potential of coated foil increased by 104.4 mV while its current density reduced by 0.11 mA cm?2. EIS analysis showed that the corrosion resistance of Fe foil increased significantly after coating with Fe3O4 film.  相似文献   

16.
The micro-sized sphere Fe2O3 particles doped with graphene nanosheets were prepared by a facile hydrothermal method. The obtained Fe2O3/graphene composite as the anode material for lithium ion batteries showed a high discharge capacity of 660 mAh g−1 during up to 100 cycles at the current density of 160 mA g−1 and good rate capability. The excellent electrochemical performance of the composite can be attributed to that graphene served as dispersing medium to prevent Fe2O3 microparticles from agglomeration and provide an excellent electronic conduction pathway.  相似文献   

17.
LiFePO4/C active material was synthesized using an ultrasonic-assisted rheological phase method. In addition, polyvinyl butyral (PVB) was added in various concentrations to provide carbon coating on the surface of the LiFePO4 particles for enhanced electrical conductivity. The crystal structure, morphology, and carbon coating layer of the synthesized LiFePO4/C was analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM), respectively. The electrochemical performance of LiFePO4/C, such as initial capacity, rate capability, cycling performance and EIS, were also evaluated. The synthesized particle had a size range of 100-150 nm and a carbon layer of about 8 nm. The LiFePO4/C (5 wt% PVB) delivered an initial discharge capacity of 167.5 mAh/g at a 0.1 C rate. It also showed an excellent capacity retention ratio of 100% after the 50th charging/discharging. EIS results demonstrate that the charge transfer resistance of the sample decreases greatly by coating with 5 wt% PVB.  相似文献   

18.
The microstructure of the coating prepared by reactive plasma spraying Fe2O3/Al composite powders was characterized by x-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The results indicated that the coating exhibited nanostructured microstructure which consisted of FeAl2O4, Fe or Fe solid solution, Al2O3 and a little FeAl. In the composite coating, spherical Fe particles (tens of nanometers to hundreds of nanometers) were distributed uniformly within the equiaxed and columnar nanograins FeAl2O4 matrix. There were two kinds of Al2O3 phases present in the composite coating. One kind was nano-sized Al2O3 particles uniformly dispersed within the matrix, forming eutectic structure of (FeAl2O4 + γ-Al2O3); the other was 1-1.5 μm Al2O3 particles embedded individually within the matrix. The composite coating had higher toughness than the conventional microstructured Al2O3 coating.  相似文献   

19.
Fe3O4/polypyrrole (PPy) core/shell nanocomposite, with Fe3O4 nanoparticle as core and PPy as shell, could be facilely synthesized via in situ chemical oxidative polymerization of pyrrole monomers on the surface of Fe3O4 nanoparticles. The results indicate that core/shell nanocomposite consists of Fe3O4 core with the mean diameter of 100 nm and adjacent PPy shell with a thickness of about 70 nm. The as-prepared Fe3O4/PPy core/shell nanocomposite exhibits a saturated magnetization of 20.1 emu/g and coercivity value of 368.3 Oe, respectively. The electromagnetic characteristics of Fe3O4/PPy core/shell nanocomposite were also investigated with a vector network analyzer in the 2-18 GHz range. The absorbing peak position moves to lower frequency with increasing the thicknesses of samples. The value of the minimum reflection loss is −22.4 dB at 12.9 GHz for Fe3O4/PPy core/shell nanocomposite with a thickness of 2.3 mm, and a broad peak with a bandwidth lower than −10 dB is about 5 GHz. Such strong absorption is attributed to better electromagnetic matching due to the existence of PPy and the special core/shell structure.  相似文献   

20.
The coating microstructures and thicknesses of the iron panels galvanized in galvalume baths containing 0.0, 0.1, 0.5 and 1.0 wt.%Cu for 10 s, 30 s, 60 s, 180 s, 300 s and 600 s have been studied detailedly. The results indicate that Cu can effectively control the Fe–Al reactivity by the synergistic effect with Si. The addition of Cu makes Si be enriched in the reaction region during the hot-dipping. It promotes the formation of the τ5 phase and hinders the growth of the Fe2Al5 phase. The diffusion path model was introduced to studying the effects of Cu and Si in the present study. The addition of 0.5–1.0 wt.%Cu in galvalume bath forms a stable diffusion path, iron substrate/Fe2Al5/FeAl35/overlay. The violent reaction between the iron substrate and the Al–Zn liquid is under control by the compact intermetallic layer, and it decreases the thickness of the intermetallic layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号