首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lead-free (1 − x − y)Bi0.5Na0.5TiO3-xBaTiO3-yBi0.5Ag0.5TiO3 (BNT-BT-BAT-x/y, x = 0-0.10, y = 0-0.075) piezoelectric ceramics were synthesized by conventional oxide-mixed method. The microstructure, ferroelectric, and piezoelectric properties of the ceramics were investigated. Results show that a morphotropic phase boundary (MPB) between rhombohedral and tetragonal phases of BNT-BT-BAT-x/0.04 ceramics is formed at x = 0.06-0.08. The addition of BAT has no obvious change on the crystal structure of BNT-BT ceramics while it causes the grain size of the ceramics to become more homogenous. Near the MPB, the ceramics with x = 0.06 and y = 0.05-0.06 possess optimum electrical properties: Pr ∼ 42.5 μC/cm2, Ec ∼ 32.0 kV/cm, d33 ∼ 172 pC/N, kp ∼ 32.6%, and kt ∼ 52.6%. The temperature dependences of kp and polarization versus electric hysteresis loops reveal that the depolarization temperature (Td) of BNT-BT-BAT-0.06/y ceramics decreases with increasing y. In addition, the polar and non-polar phases may coexist in the BNT-BT-BAT-x/y ceramics above Td.  相似文献   

2.
The crystal structure, microstructure, dielectric and ferroelectric properties of (1 − x)Na0.5Bi0.5TiO3-xBaTiO3 ceramics with x = 0, 0.03, 0.05, 0.07 and 0.1 are investigated. A structural variation according to the system composition was investigated by X-ray diffraction (XRD) analyses. The results revealed that the synthesis temperature for pure perovskite phase powder prepared by the present sol-gel process is much lower (800 °C), and a rhombohedral-tetragonal morphotropic phase boundary (MPB) is found for x = 0.07 composition which showing the highest remanent polarization value and the smallest coercive field. The optimum dielectric and piezoelectric properties were found with the 0.93Na0.5Bi0.5TiO3-0.07BaTiO3 composition. The piezoelectric constant d33 is 120 pC/N and good polarization behaviour was observed with remanent polarization (Pr) of 12.18 pC/cm2, coercive field (Ec) of 2.11 kV/mm, and enhanced dielectric properties ?r > 1500 at room temperature. The 0.93Na0.5Bi0.5TiO3-0.07BaTiO3-based ceramic is a promising lead-free piezoelectric candidate for applications in different devices.  相似文献   

3.
The ternary system (1 − x − y)Bi0.5Na0.5TiO3xBi0.5K0.5TiO3yBi0.5Li0.5TiO3 (abbreviated to BNKLT-x/y) was synthesized by conventional oxide-mixed method. The phase structure, microstructure, and dielectric, ferroelectric and piezoelectric properties of the ceramics were investigated. The X-ray diffraction patterns showed that pure perovskite phase with rhombohedral structure can be obtained in all the ceramics. The grain size varied with x and y. The temperature dependence of dielectric constant and dielectric loss revealed there were two phase transitions which were from ferroelectric (tetragonal) to anti-ferroelectric (rhombohedral) and anti-ferroelectric to paraelectric (cubic). Either increasing x or y content can make Tm (the temperature at which dielectric constant r reaches the maximum) increase. With the addition of Bi0.5K0.5TiO3, the remanent polarization Pr increased but the coercive field Ec decreased. With the addition of Bi0.5Li0.5TiO3, Pr increased obviously and Ec increased slightly. Due to the stronger ferroelectricity by modifying Bi0.5K0.5TiO3 and Bi0.5Li0.5TiO3, the piezoelectric properties were enhanced at x = 0.22 and y = 0.10, which were as follows: Pr = 31.92 μC/cm2, Ec = 32.40 kV/cm, r = 1118, tan δ = 0.041, d33 = 203 pC/N and Kp = 0.31. The results show that the BNKLT-x/y ceramics are promising candidates for the lead-free materials.  相似文献   

4.
Lead-free (1 − x)Bi0.47Na0.47Ba0.06TiO3-xKNbO3 (BNBT-xKN, x = 0-0.08) ceramics were prepared by ordinary ceramic sintering technique. The piezoelectric, dielectric and ferroelectric properties of the ceramics are investigated and discussed. The results of X-ray diffraction (XRD) indicate that KNbO3 (KN) has diffused into Bi0.47Na0.47Ba0.06TiO3 (BNBT) lattices to form a solid solution with a pure perovskite structure. Moderate additive of KN (x ≤ 0.02) in BNBT-xKN ceramics enhance their piezoelectric and ferroelectric properties. Three dielectric anomaly peaks are observed in BNBT-0.00KN, BNBT-0.01KN and BNBT-0.02KN ceramics. With the increment of KN in BNBT-xKN ceramics, the dielectric anomaly peaks shift to lower temperature. BNBT-0.01KN ceramic exhibits excellent piezoelectric properties and strong ferroelectricity: piezoelectric coefficient, d33 = 195 pC/N; electromechanical coupling factor, kt = 58.9 and kp = 29.3%; mechanical quality factor, Qm = 113; remnant polarization, Pr = 41.8 μC/cm2; coercive field, Ec = 19.5 kV/cm.  相似文献   

5.
Plate-like NaNbO3 (NN) particles were used as the raw material to fabricate (1 − x)[0.93 K0.48Na0.52Nb O3-0.07Li(Ta0.5Nb0.5)O3]-xNaNbO3 lead-free piezoelectric ceramics using a conventional ceramic process. The effects of NN on the crystal structure and piezoelectric properties of the ceramics were investigated. The results of X-ray diffraction suggest that the perovskite phase coexists with the K3Li2Nb5O15 phase, and the tilting of the oxygen octahedron is probably responsible for the evolution of the tungsten-bronze-typed K3Li2Nb5O15 phase. The Curie temperature (TC) is shifted to lower temperature with increasing NN content. (1 − x)[0.93 K0.48Na0.52NbO3-0.07Li(Ta0.5Nb0.5)O3]-xNaNbO3 ceramics show obvious dielectric relaxor characteristics for x > 0.03, and the relaxor behavior of ceramics is strengthened by increasing NN content. Both the electromechanical coupling factor (kp) and the piezoelectric constant (d33) decrease with increasing amounts of NN. 0.01-0.03 mol of plate-like NaNbO3 in 0.93 K0.48Na0.52NbO3-0.07Li(Ta0.5Nb0.5)O3 gives the optimum content for preparing textured ceramics by the RTGG method.  相似文献   

6.
(Na0.5Bi0.5)0.93Ba0.07TiO3 ceramics added with 0.2 wt.% Ln2O3 (Ln = La, Pr, Eu, Gd) were prepared by a citrate method, and the structure and electrical properties of the ceramics were investigated with respect to the size of the lanthanide. All the specimens maintain a coexistence of rhombohedral and tetragonal phases in crystal structure, while no remarkable evolution in microstructure with the lanthanide addition was observed. Compared with (Na0.5Bi0.5)0.93Ba0.07TiO3, the lanthanide addition resulted in an increased diffuseness in phase transition and a decrease in depolarization temperature (Td). The variation in dielectric, piezoelectric and ferroelectric properties with the lanthanide addition presents an evident lanthanide size dependence. The addition of La2O3 or Pr2O3 tailored the electrical properties basically following a soft doping effect, with the specimens added with La2O3 and Pr2O3 attaining high piezoelectric constants (d33) of 188 and 184 pC/N, respectively. By contrast, the Eu2O3 or Gd2O3 addition led to an abnormal change in the electrical properties, which was qualitatively interpreted by an internal stress effect.  相似文献   

7.
Lead-free piezoelectric ceramics (0.8 − x)BaTiO3-0.2Bi0.5Na0.5TiO3-xBaZrO3 (BT-BNT-xBZ, 0 ≤ x ≤ 0.08) doped with 0.3 wt% Li2CO3 were prepared by conventional solid-state reaction method. With the Li2CO3 doping, all the ceramics can be well sintered at 1170-1210 °C. The phase structure, dielectric, ferroelectric and piezoelectric properties of the ceramics were investigated. Results show that a morphotropic phase boundary (MPB) between tetragonal and pseudocubic phases exists at x = 0.03-0.04. The addition of Zr can improve the piezoelectric properties of BT-BNT ceramics. Furthermore, a relaxor behavior is induced and the tetragonal-cubic phase transition shifts towards lower temperatures after the addition of Zr. The ceramics with x = 0.03 possess the optimum electrical properties: d33 = 72 pC/N, kp = 15.4%, ?r = 661, Pr = 18.5 μC/cm2, Ec = 34.1 kV/cm, Tc = 150 °C.  相似文献   

8.
We present here the results of comprehensive X-ray diffraction and dielectric studies on several compositions of (1 − x)[Pb(Mg0.5W0.5)O3]-xPbTiO3 (PMW-xPT) solid solution across the morphotropic phase boundary. Rietveld analysis of the powder X-ray diffraction data reveals cubic (space group Fm3m) structure of PMW-xPT ceramics for the compositions with x ≤ 0.42, tetragonal (space group P4mm) structure for the compositions with x ≥ 0.72 and coexistence of the tetragonal and cubic phases for the intermediate compositions (0.46 ≤ x ≤ 0.68). Temperature dependence of the dielectric permittivity above room temperature exhibits diffuse nature of phase transitions for the compositions in the cubic and two phase region while the compositions with tetragonal structure at room temperature exhibit sharp ferroelectric to paraelectric phase transition. The PMW-xPT compositions with coexistence of tetragonal and cubic phases at room temperature exhibit two anomalies in the temperature dependence of the dielectric permittivity above room temperature. Using results of structural and dielectric studies a partial phase diagram of PMW-xPT ceramics is also presented.  相似文献   

9.
(Ba0.68−xSr0.308Bi0.006Na0.006Mgx)(Ti0.99Sn0.01)O3 ceramics were synthesized by solid-state reaction process. The samples (X ≤ 0.010) are a mixture of cubic (major) and rhombohedral (minor) phases. The rhombohedral phase causes a large dielectric loss in low temperature regions and plays an important role in diffuse phase transition of ceramics. While X > 0.010, the rhombohedral phase decreases and gradually disappears. The dielectric loss of ceramics in the low temperature regions decreases, and the samples change from the diffuse phase transition to the phase transition of second order, and then to of first order. In the temperature range of 270-370 °C, intrinsic conduction dominates conductivity of ceramics.  相似文献   

10.
Bi0.5Na0.5TiO3-BaTiO3-Bi0.5K0.5TiO3 (BNT-BT-BKT) lead-free piezoceramics with compositions near the rhombohedral-tetragonal morphotropic phase boundary (MPB) were prepared and investigated. At room temperature, all ceramics show excellent electrical properties. In this study, the best properties were observed in 0.884BNT-0.036BT-0.08BKT, with the remnant polarization, bipolar total strain, unipolar strain, piezoelectric constant, and planar electromechanical coupling factor being 34.4 μC cm−2, 0.25%, 0.15%, 122 pC N−1, and 0.30, respectively. Detailed analysis of the temperature dependence of polarization-electric field (P-E) loops and bipolar/unipolar strain-electric field (S-E) curves of this composition revealed a ferroelectric-antiferroelectric phase transition around 100 °C. Around this temperature, there is a significant shape change in both P-E and S-E curves, accompanied by enhanced strain and decreased polarization; the largest recoverable strain reaches 0.42%. These results can be explained by the formation of antiferroelectric order and the contribution of field-induced antiferroelectric-ferroelectric phase transition to piezoelectric response. Our results indicate that BNT-BT-BKT lead-free piezoceramics can have excellent electrical properties in compositions near the MPB and also reveal some insight into the temperature dependence of the electrical performance with the MPB composition.  相似文献   

11.
(Bi0.5Na0.5)0.94Ba0.06TiO3 + x wt% Dy2O3 with x = 0-0.3 ceramics were synthesized by conventional solid-state processes. The effects of Dy2O3 on the microstructure, the piezoelectric and dielectric properties were investigated. X-ray diffraction pattern confirmed that the coexistence of tetragonal and rhombohedral phases in the (Bi0.5Na0.5)0.94Ba0.06TiO3 composition was not changed by adding 0.05-0.3 wt% Dy2O3. SEM images indicate that all the ceramics have pore-free microstructures with high density, and that doping of Dy2O3 inhibits the grain growth of the ceramics. The addition of Dy2O3 shows the double effects on decreasing the piezoelectric and dielectric properties for 0 < x < 0.15 when Dy3+ ions substitute B-site Ti4+ ions, and increasing the properties for 0.15 < x < 0.3 when Dy3+ ions enters into A-site of the perovskite structure. The optimum electric properties of piezoelectric constant d33 = 170 pC/N and the dielectric constant ?r = 1900 (at a frequency of 1 kHz) are obtained at x = 0.3.  相似文献   

12.
Polycrystalline perovskite lead free material (Na0.5Bi0.5)0.91Ba0.090TiO3 was prepared by solid state reaction method. The crystal structure examined by X-ray powder diffraction indicates that the material was single phase with tetragonal structure. Dielectric studies exhibit a diffuse phase transition and characterized by a strong temperature and frequency dispersion of permittivity which relates cation disorder at A-site and exhibits relaxor behaviour. The dielectric relaxation has been modeled using the Vogel-Fulcher relationship, the calculated activation energy found to be Ea = 0.021 eV. Complex impedance analysis indicates the system undergoing a polydispersive non-Debye type relaxation. Also, used to characterize grain and grain-boundary resistivities of Ba substituted (Na0.5Bi0.5)TiO3 ceramic. The phenomenon was also interpreted by accounting for microstructural differences. The corresponding relaxation times were also used to confirm the interpretation of complex impedance spectra. Overlapping of grain boundary and electrode relaxation processes can be separated above about 4000 C. Electrical modulus spectroscopy studies have been performed. The conductivity parameters such as ion-hopping rate (ωp) and the charge carrier concentration (K1) have been calculated using Almond and West formalism.  相似文献   

13.
The structure, ferroelectric and magnetic properties of (1 − x)BiFeO3-xBi0.5Na0.5TiO3 (x = 0.37) solid solution fabricated by a sol-gel method have been investigated. X-ray diffraction and Raman spectroscopy measurements show a single-phase perovskite structure with no impurities identified. Compared with pure BiFeO3, the coexistence of ferroelectricity and ferrimagnetism have been observed at room temperature for the solution with remnant polarization Pr = 1.41 μC/cm2 and remnant magnetization Mr = 0.054 emu/g. Importantly, a magnetic transition from ferrimagnetic (FM) ordering to paramagnetic (PM) state is observed, with Curie temperature TC ∼ 330 K, being explained in terms of the suppression of cycloid spin configuration by the structural distortion.  相似文献   

14.
Bismuth potassium titanate (Bi0.5K0.5TiO3; BKT) and praseodymium-doped BKT (Bi0.5(1−x)PrxK0.5TiO3; BPKT) powders were synthesised using the soft combustion technique. Fine particles of 10-100 nm of BKT and BPKT were produced. A single phase BKT was obtained with a minimum of 0.5 mol of glycine. Various compounds of Bi0.5(1−x)PrxK0.5TiO3 where x = 0.01, 0.03, 0.05, 0.10, 0.15 and 0.20 were prepared. Pure BKT and BPKT powders were obtained after calcination at 800 °C for 3 h. After sintering at 1050 °C for 5 h, pure BKT and BPKT pellets were obtained for x = 0 and 0.01. However, for BPKT with x = 0.03, 0.05, 0.10, 0.15 and 0.20, a minor amount of Bi4Ti3O12 (BIT) secondary phase was present after sintering at 1050 °C for 5 h. The crystallite size and grain size of all the samples followed similar trends, first increasing from x = 0 (undoped BKT) to x = 0.05 and then decreasing above x = 0.05. Among the undoped and doped samples, BPKT with x = 0.05 had the highest dielectric properties (?r = 713.87) due to its large crystallite size (68.66 nm), large grain size (∼435 nm) and high relative density (93.39%).  相似文献   

15.
0.94Bi0.5Na0.5TiO3-0.06BaTiO3 (NBTB) and 0.05BiFeO3-0.95NBTB (BF-doped NBTB) lead-free ceramics were prepared by solid state reaction method. The ceramics were sintered at 1180 °C for 2 h in O2 and N2. All ceramics exhibited a single phase of perovskite structure. Relative amount of tetragonal phase was related to the sintering atmospheres. Both grain size and shape were influenced by the sintering atmospheres. Sintering the ceramics in N2 weakened their dielectric anomalies corresponding to the transition from ferroelectric phase to the so-called “intermediate phase”. When the NBTB and BF-doped NBTB ceramics were sintered in N2, their maximum dielectric constant and the degree of diffuseness of the transition from the “intermediate phase” to paraelectric phase increased, but their Curie temperatures decreased. The difference in dielectric properties of the ceramics sintered in different atmospheres was closely related to the difference in oxygen vacancy concentration. The correlation between ferroelectric properties and sintering atmospheres is associated with a competing effect among oxygen vacancy concentration, A-site vacancy concentration and percentage of tetragonal phase.  相似文献   

16.
The present work reports the elaboration and physical investigation of new compounds of the following composition Ba1−xNax(Ti1−ySny)1−xNbxO3 (BTSnNxy). The studied ternary system presents some continuous solid solutions between the next 3 phases: the NaNbO3 antiferroelectric phase that becomes easily ferroelectric at low rate substitutions, the BaTiO3 ferroelectric phase and the paraelectric stannate phase BaSnO3. Two different dielectric behaviors can be observed once some substitutions are made either in A or B sites of an ABO3 perovskite. These substitutions modify the dielectric properties of the material. The introduction of Sn4+ and Ti4+ cations in the B site favors, respectively, a decrease of the transition temperature and an increase in the value of the real dielectric permittivity. The transition temperature should be modulated by varying the rate of cationic substitution. Some relaxor materials can be obtained at a temperature around room temperature.  相似文献   

17.
(1 − x)K0.02Na0.98NbO3-xBaTiO3 ceramics were prepared by the solid state reaction method, and their electrical properties were investigated. The samples showed crystal structure changing from monoclinic to orthorhombic, and then to tetragonal, with an increase in BaTiO3 content. The addition of BaTiO3 markedly enhanced ferroelectric and piezoelectric properties of K0.02Na0.98NbO3 ceramics. Remnant polarization increased and coercive field decreased only in the samples with small amount of BaTiO3. Piezoelectric properties were improved with the addition of BaTiO3. The 0.9K0.02Na0.98NbO3-0.1BaTiO3 ceramics showed maximum piezoelectric constant (d33 = 160 pC/N), which was even comparable with that of (1 − x)K0.5Na0.5NbO3-xBaTiO3 ceramics. Their good piezoelectric properties, along with a low ferroelectric-ferroelectric transition temperature (TF-F), made the 0.9K0.02Na0.98NbO3-0.1BaTiO3 ceramics a potential candidate for lead-free piezoelectric applications.  相似文献   

18.
The microwave dielectric properties of La(Mg0.5−xNixSn0.5)O3 ceramics were examined with a view to their exploitation for mobile communication. The La(Mg0.5−xNixSn0.5)O3 ceramics were prepared by the conventional solid-state method at various sintering temperatures. The X-ray diffraction patterns of the La(Mg0.4Ni0.1Sn0.5)O3 ceramics revealed no significant variation of phase with sintering temperatures. Apparent density of 6.71 g/cm3, dielectric constant (?r) of 20.19, quality factor (Q × f) of 74,600 GHz, and temperature coefficient of resonant frequency (τf) of −85 ppm/°C were obtained for La(Mg0.4Ni0.1Sn0.5)O3 ceramics that were sintered at 1550 °C for 4 h.  相似文献   

19.
The crystal structure and the dielectric properties of (1 − x)La(Mg0.5Ti0.5)O3-xCa0.8Sm0.4/3TiO3 ceramics have been investigated. Ca0.8Sm0.4/3TiO3 was employed as a τf compensator and was added to La(Mg0.5Ti0.5)O3 to achieve a temperature-stable material. The formation of (1 − x)La(Mg0.5Ti0.5)O3-xCa0.8Sm0.4/3TiO3 solid solutions were confirmed by the XRD results and the measured lattice parameters for all compositions. The dielectric properties are strongly correlated to the sintering temperature and the compositional ratio of the specimens. Although the ?r of the specimen could be boosted by increasing the amount of Ca0.8Sm0.4/3TiO3, it would instead render a decrease in the Q × f. The τf value is strongly correlated to the compositions and can be controlled by the existing phases. A new microwave dielectric material 0.45La(Mg0.5Ti0.5)O3-0.55Ca0.8Sm0.4/3TiO3, possessing a fine combination of microwave dielectric properties with an ?r of 47.83, a Q × f of 26,500 GHz (at 6.2 GHz) and a τf of −1.7 ppm/°C, is proposed as a very promising candidate material for today's 3G applications.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号