首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Film growth of hydrogenated amorphous silicon (a-Si:H) by hot-wire chemical vapor deposition was studied simultaneously and in real-time by spectroscopic ellipsometry and attenuated total reflection infrared spectroscopy. The a-Si:H films were deposited on native oxide-covered GaAs(100) and Si(100) substrates at temperatures ranging from 70 to 350 °C. A temperature dependent initial growth phase is revealed by the evolution of the surface roughness and the surface and bulk SiHx absorption peaks. It is discussed that the films show a distinct nucleation behavior by the formation of islands on the surface that subsequently coalesce followed by bulk a-Si:H growth. Insight into a temperature-activated smoothening mechanism and the creation of a hydrogen-rich interface layer is presented.  相似文献   

2.
The application of single-pass attenuated total reflection Fourier transform infrared (ATR-FT-IR) microscopy was investigated for secondary structure analysis of 15 representative proteins in H2O solution. This is the first reported application of single-pass ATR-FT-IR for protein analysis; thus, the method was validated using transmission FT-IR and multipass ATR-FT-IR as referee methods. The single-pass ATR-FT-IR technique was advantageous since the single-pass geometry permits rapid secondary structure analysis on small volumes of protein in H2O solution without the use of demountable thin path length sample cells. Moreover, the fact that H2O backgrounds were small allowed the simultaneous observation of the amide I-III, A, and B regions without having to perform H2O subtraction. A comparison of replicate protein spectra indicated that the single-pass ATR-FT-IR method yields more reproducible data than those acquired by transmission FT-IR. The observed trends for the amide I-III and A bands obtained by single-pass ATR-FT-IR agreed with those in the literature for conventional transmission FT-IR.  相似文献   

3.
A parallel-flow H(2)O(liquid)-H(2)O(vapor) equilibration and laser spectroscopy method provides a new way to monitor the hydrogen and oxygen stable isotopic composition of water from rivers or lakes or in hydrologic tracer tests in real time. Two custom-built equilibrator devices and one commercial membrane device were tested to determine if they could be used to convert natural water samples (lakes, rivers, groundwater) to a H(2)O gas phase for continuous online δ(18)O and δD isotopic analysis by laser spectroscopy. Both the commercial minimodule device and the marble-filled equilibrator produced water vapor in isotopic equilibrium with the flowing liquid water, suggesting that unattended field measurement using these devices is possible. Oxygen isotope disequilibrium was indicated using the minimodule device at low temperatures.  相似文献   

4.
The conditions for grain boundary (GB) structural transitions are determined from a diffuse interface model that incorporates structural disorder and crystallographic orientation. A graphical construction and numerical calculations illustrate the existence of a first-order GB order–disorder transition below the bulk melting point. When thermodynamic conditions permit their existence, disordered GB structures tend to be stable at higher temperatures and are perfectly wet by liquid at the melting point, while ordered grain boundaries are meta-stable against preferential melting. We calculate GB phase diagrams which are analogous to those for liquid–vapor phase transitions.  相似文献   

5.
In this study, attenuated total reflection Fourier transform infrared (ATR-FT-IR) spectroscopy is used to investigate water uptake and phase transitions for atmospherically relevant particles. Changes in the ATR-FT-IR spectra of NaCl, NH(4) NO(3), (NH(4))(2)SO(4), Ca(NO(3))(2), and SiO(2) as a function of relative humidity (RH) are presented and discussed. For these various particles, water can (1) become adsorbed on the particle surface; and/or (2) become absorbed in the particle structure to form a hydrate salt; and/or (3) become absorbed by the particle to form a liquid solution. Spectral features and analyses that distinguish these various processes are discussed. For the salts that do undergo a solid to liquid phase transition (deliquescence), excellent agreement is found between the measurements made here with ATR-FT-IR spectroscopy, a relatively simple, inexpensive, and readily available analytical tool, compared to more expensive, elaborate aerosol flow reactor systems using tandem differential mobility analyzers. In addition, for particles that adsorb water, we show here the utility of coupling ATR-FT-IR measurements with simultaneous quartz crystal microbalance (QCM) measurements. This coupling allows for the quantification of the amount of water associated with the particle as a function of relative humidity (f(RH)) along with the spectroscopic data.  相似文献   

6.
The infrared spectral characteristics of ten different types of disaccharides (trehalose, kojibiose, nigerose, maltose, isomaltose, trehalulose, sucrose, turanose, maltulose, and palatinose) and five different types of monosaccharides (glucose, mannose, galactose, talose, and fructose) in aqueous solutions (H2O and D2O) were determined. The infrared spectra were collected using the Fourier transform infrared attenuated total reflectance (FT-IR/ATR) method and comparisons between the degrees of absorption band-shift of the saccharide spectra in the H2O solution with those in the D2O solution with respect to the saccharide concentrations were done. The study revealed that the wavenumber shifts in the bands of mono- and disaccharides in the H2O and D2O solutions could be used as an indicator of the level of interaction between the saccharides and water. The study also focused on the glycosidic linkage position and the constituent monosaccharides and found that they have a significant influence on the infrared spectroscopic characterization of disaccharides in an aqueous solution.  相似文献   

7.
Preparation of poly-Si films by Cat-CVD for thin film transistor   总被引:5,自引:0,他引:5  
Polycrystalline silicon (poly-Si) films have been deposited on low-temperature substrates using a hot-wall type catalytic chemical vapor deposition apparatus. Average grain size of the deposited poly-Si films was 10–20 nm. Hall mobility of 2–5 cm2 V−1 s−1 was obtained even for a sample left at ambient conditions for a month. The influence of the sidewall temperature on poly-Si film properties has been investigated. The poly-Si films have been prepared under the hot/cold-wall conditions. Comparing crystalline fractions of both films measured by Raman spectroscopy, the difference was small. The crystalline fractions of 89 and 85% were obtained for the hot- and cold-wall conditions, respectively. As for the results of attenuated total reflection Fourier-transform infrared spectroscopy, a distinct difference between the two films was found, H and O atoms were more incorporated in the films deposited under the cold-wall conditions than in the films under the hot-wall conditions.  相似文献   

8.
The results of sound velocity measurements in mercury, performed at temperatures from 300 up to 2(150 K and pressures from 30 up to 1900 bar by a precise pulsed phase-sensitive technique for a frequency of 10 MHz, are presented. The explored range of state parameters includes liquid and gaseous phases, the coexistence curve up to the critical point, and the supercritical region. The data obtained indicate the existence of two first-order phase transitions in mercury that take place in the vapor near saturation and in the supercritical fluid. The positions of the critical points of these transitions were estimated. An interpretation of the observed phenomena is given: It leads to the new approach to the nature of the critical point of liquid-gas transition in mercury. It is shown also that the fourth derivative of the thermodynamic potential of mercury has a special feature in the metal-nonmetal transition region.Invited paper presented at the Twelfth Symposium on Thermophysical Properties, June 19–24, 1994, Boulder, Colorado, U.S.A.  相似文献   

9.
Photoacoustic (PA) spectrum of natural dry snow was obtained in the wavelength range of 200–1100 nm, using an indigenously developed PA Spectrometer (Kapil, J.C., Joshi, S.K., Rai. A.K., 2003. Insitu Photoacoustic Investigations of some optically transparent samples like ice and snow. Review of Scientific Instruments 74 (7), 3536–3543), working in a temperature range of room temperature to − 40 °C. Fundamental frequencies (v1, v2, v3) as well as overtone frequencies of O–H vibrations in a snow crystal were identified and the corresponding combinational frequencies were assigned in the UV–VIS–NIR region of electromagnetic spectrum. The PA spectrum of snow thus obtained was compared with the PA spectra of distilled water and hexagonal ice (ice-Ih), in the same wavelength region. Bathochromic shifts (942→974→983 nm) in the third overtone frequency (3v1) of fundamental O–H vibrations in the H2O molecule were observed when the phase changes as vapor→liquid→solid. These shifts have been explained in the context of increased contents of hydrogen bonding (skeleton of H-bonds) in the denser phases (liquid and solid) as compared to the rare phase (vapor). The effect of temperature on the creation or breakage of H-bonds in snow crystals has been demonstrated by the relative shifting of the absorption maxima. For monitoring the effect of H-bonding leading to the intricacy in the crystallography of snow, vibrational absorption bands were analyzed from the relative shifting associated to the absorption maxima of snow and snow-melt water at two different wavelengths (535 and 826 nm) near the phase transitions. Also, our investigation reveals that ΔEj (change in vibrational energy) are symmetrically aligned about the Δv-axes (change in vibrational quantum number) at phase transitions.  相似文献   

10.
This paper reports the manipulation of surface plasmon polaritons (SPPs) in a liquid plasmonic metal by changing its physical phase. Dynamic properties were controlled by solid-to-liquid phase transitions in 1D Ga gratings that were fabricated using a simple molding process. Solid and liquid phases were found to exhibit different plasmonic properties, where light coupled to SPPs more efficiently in the liquid phase. We exploited the supercooling characteristics of Ga to access plasmonic properties associated with the liquid phase over a wider temperature range (up to 30 °C below the melting point of bulk Ga). Ab initio density functional theory-molecular dynamic calculations showed that the broadening of the solid-state electronic band structure was responsible for the superior plasmonic properties of the liquid metal.  相似文献   

11.
Far-ultraviolet (FUV) spectroscopy combined with attenuated total reflection (ATR) is employed for direct measurement of the concentrations of semiconductor wafer cleaning fluids such as SC-1 (aqueous solution of NH(3) and H(2)O(2)) and SC-2 (aqueous solution of HCl and H(2)O(2)). FUV spectra of these aqueous solutions in the 170-200 nm region are highly sensitive to changes in both hydrogen bonding and hydration. Although ATR measurement results in lower absorptivity compared to transmittance measurement, it is possible to increase absorption with greater evanescent wave penetration depth using a low refractive index internal reflection element (IRE). We adopt quartz as an IRE material. Since the refractive index of quartz becomes lower than that of water in the low energy side of an intense absorption band due to the n --> sigma* transition of water, the quartz IRE yields non-total reflection wavelength regions. However, near 175 nm the effective absorptivity of the tail of water's absorption band can be successfully enlarged, making the FUV-ATR technique suitable for measuring the concentrations of the components in the semiconductor wafer cleaning fluids. In the present study we prepared the same cleaning fluids as those used in actual semiconductor fabrication and measured their FUV-ATR spectra in the 150-300 nm wavelength range. It was found that even with the quartz IRE one can measure FUV-ATR spectra under total reflection conditions at 175 nm or above. We created calibration models for predicting both NH(3) and H(2)O(2) in the concentration ranges of 0-10% in SC-1 using multiple linear regression (MLR). The standard deviations of the models were 0.033% and 0.265% for NH(3) and H(2)O(2), respectively. The same procedure was repeated under the same conditions for HCl and H(2)O(2) in SC-2, yielding corresponding values of 0.018% for HCl and 0.178% for H(2)O(2).  相似文献   

12.
Surface modification techniques were employed in order to provide functionalized silicone rubber with enhanced cytocompatibility. Acrylic acid (AAc), methacrylic acid (MAAc) and glycidylmethacrylate (GMA) were graft-co-polymerized onto the surface of silicone induced by an argon plasma and thermal initiation. The polymerizations were carried out in solution, in the case of acrylic acid a vapor phase graft-co-polymerization subsequent to argon plasma activation was carried out as well. Human fibronectin (hFn), which acts as a cell adhesion mediator for fibroblasts, was immobilized by making use of the generated carboxylic or epoxy groups, respectively. Surface analysis was accomplished by means of X-ray photoelectron spectroscopy (XPS), infrared spectroscopy in attenuated total reflection mode (IR-ATR), scanning electron microscopy (SEM), atomic force microscopy (AFM) and dynamic contact angle measurements using the Wilhelmy-plate method. The amount of immobilized active hFn was semiquantified by enzyme-linked immunosorbent assay (ELISA) using a structure-specific antibody against the cell-binding domain of hFn. In vitro testing showed a remarkable difference between surfaces exposing adsorbed-only and surfaces with covalently immobilized hFn. © 2001 Kluwer Academic Publishers  相似文献   

13.
Depth profiling in Fourier transform infrared (FT-IR) spectroscopic imaging has been demonstrated using a single reflection variable angle attenuated total reflection (ATR) accessory. Chemical information about samples can be obtained in three dimensions by acquiring ATR-FT-IR images at different angles of incidence through the ATR crystal. The image quality and field of view achieved at different angles of incidence has been discussed. A polymer film comprising two layers has been used as an example to demonstrate the principle of the measurement. The demonstrated approach is a promising tool to obtain depth profiles of heterogeneous materials. The extent of the measured depths is limited and ranges from approximately 0.3 to 4 microm, but the spatial resolution in the z-direction is not limited by diffraction. The development of this approach opens up the possibility to study the spatial heterogeneity of thin films including biological tissues, such as hair and skin, with high depth resolution.  相似文献   

14.
The thermal diffusivity and sound speed of binary refrigerant mixtures of R143a (1,1,1-trifluoroethane) and R125 (pentafluoroethane) have been determined for both the saturated liquid and vapor phase using dynamic light scattering (DLS). Measurements were performed for four quite different mixture compositions over a wide temperature range from 293 to 345 K approaching the vapor-liquid critical point. The results obtained corroborate the usefulness of a simple prediction method for the determination of different thermophysical properties of multicomponent mixtures in the two-phase region up to the critical point. Besides the information on the properties for the pure components, the successful application of the prediction method is also based on an exact knowledge of the critical temperature. The composition dependence of the critical temperature has been determined by observation of the vanishing meniscus between liquid and vapor phases. The mixture results are discussed in detail and compared with available literature data.  相似文献   

15.
In this work attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy was used to probe the thermal gelation behavior of aqueous solutions of hydroxypropyl methylcellulose (HPMC), specifically thermal gelation and accompanying precipitation. Cloud point measurements are usually evaluated through turbidity in dilute solutions but the method cannot readily be applied to more concentrated or highly viscous solutions. From the ATR-FTIR data, intensity changes of the nu(CO) band marked the onset of gelation and information about the temperature of gelation and the effect of the gel structure on the water hydrogen bonding network was elucidated. Changes in the relative intensities of bands associated with the methoxyl groups and hydrogen-bond-forming secondary alcohol groups indicated that hydrophobic polymer chain interactions were involved in the gelation process. The dominance of inter-molecular H bonding over intra-molecular H bonding within the cellulose ether in solution was also observed. The ATR-FTIR data was in good agreement with measurements of turbidity conducted on the same systems. The work indicates significant potential for the use of ATR-FTIR for the investigation of gelation and cloud point measurements in viscous cellulosic formulations.  相似文献   

16.
New opportunities exist to obtain chemical images using attenuated total reflection infrared (ATR-IR) spectroscopy. This paper shows the feasibility of obtaining FT-IR images with a spatial resolution of at least 3-4 microm using a Ge ATR objective coupled with an infrared microscope. The improved spatial resolution compared to FT-IR images obtained by the transmission method is due to the high refractive index of the ATR crystal, which gives a high numerical aperture and hence, a higher spatial resolution. FT-IR imaging with a conventional diamond ATR accessory has been investigated. This is the first time that FT-IR imaging is reported using such a versatile accessory based on a diamond ATR crystal. These results showed that a spatial resolution up to 13 microm can be achieved without the use of infrared microscope objectives. One advantage of the diamond element is that it allows pressure to be applied and hence, good contact to be obtained over the whole field of view.  相似文献   

17.
Joonhyuk Cho 《Thin solid films》2010,518(18):5066-2118
An approach to pattern a conducting polymer on various flexible substrates using vapor deposition polymerization-mediated inkjet printing method was demonstrated. Complex patterns of doped emeraldine salt polyaniline were obtained via chemical oxidation polymerization of vaporized aniline monomer on inkjet-printed oxidant patterns. The features of pattern were precisely controlled by inkjet printing with a micrometer-scale resolution. Fourier transformed infrared attenuated total reflection analysis was conducted in order to confirm the polymerization of aniline monomer and UV-visible spectroscopy analysis was used to investigate the oxidation state of obtained polyaniline. The minimum width of patterned line was ca. 80 μm. The sheet resistance of patterned polyaniline films was 3.8 × 103 Ω/□ for an average patterned film thickness of ca. 450 nm.  相似文献   

18.
Materials making use of thin ionic liquid (IL) films as support-modifying functional layer open up a variety of new possibilities in heterogeneous catalysis, which range from the tailoring of gas-surface interactions to the immobilization of molecularly defined reactive sites. The present report reviews recent progress towards an understanding of "supported ionic liquid phase (SILP)" and "solid catalysts with ionic liquid layer (SCILL)" materials at the microscopic level, using a surface science and model catalysis type of approach. Thin film IL systems can be prepared not only ex-situ, but also in-situ under ultrahigh vacuum (UHV) conditions using atomically well-defined surfaces as substrates, for example by physical vapor deposition (PVD). Due to their low vapor pressure, these systems can be studied in UHV using the full spectrum of surface science techniques. We discuss general strategies and considerations of this approach and exemplify the information available from complementary methods, specifically photoelectron spectroscopy and surface vibrational spectroscopy.  相似文献   

19.
Chemometric methods combined with infrared (IR) spectroscopy, using attenuated total reflectance (ATR) sampling, are employed here to characterize the stoichiometry of complexes of solvent molecules in the liquid phase. The spectral information provides insight into the liquid microstructure present in liquid chromatographic mobile phases. This information should make it easier to understand and predict the effects of changes in mobile phase composition on the results of chromatographic separations. In this paper, mobile phases consisting of 0 mol % to 100 mol % acetonitrile in water were studied, with the addition of acetaldehyde as a model solute at concentrations ranging from 3 to 8 mol %. Using three-way multivariate curve resolution by the alternating least squares method (MCR-ALS) it was possible to resolve eight unique spectra: four mobile phase components, and four unique spectra of acetaldehyde solvated in different environments. The directions of the shifts of the important acetaldehyde infrared bands show good correlation with those predicted by gas-phase ab initio calculations of small solvated clusters.  相似文献   

20.
A method to selectively probe the different adsorption of enantiomers at chiral solid-liquid interfaces is applied, which combines attenuated total reflection infrared spectroscopy and modulation spectroscopy. The spectral changes on the surface are followed while the absolute configuration of the adsorbate is changed periodically. Demodulated spectra are calculated by performing a subsequent digital phase-sensitive data analysis. The method is sensitive solely to the difference of the interaction of the two enantiomers with the chiral surface, and the small spectral changes are amplified by the phase-sensitive data analysis. Its potential is demonstrated by investigating an already well-studied system in liquid chromatography, namely, the enantiomer separation of N-3,5-dinitrobenzoyl-(R,S)-leucine (DNB-(R,S)-Leu) using tert-butylcarbamoyl quinine (tBuCQN) as the chiral selector immobilized on the surface of porous silica particles. The performed experiments and density functional theory calculations confirm an interaction model that was proposed earlier based on solution NMR and XRD in the solid state. It emerges that the ionic interaction is the strongest one, but the main reason for the potential for enantioseparation of the chiral stationary phase (CSP) is the distinct formation of a hydrogen bond of the (S)-enantiomer with the chiral selector. This H-bond is established between the amide N-H of DNB-(S)-Leu with the carbamate C=O of the CSP. The (R)-enantiomer instead shows no specific hydrogen bonds. Only the unspecific ionic bonding between the protonated quinine part of the tBuCQN and the carboxylate of the DNB-(R)-Leu (holds also for DNB-(S)-Leu) is observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号