首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MRI artifact cancellation due to rigid motion in the imaging plane   总被引:7,自引:0,他引:7  
A post-processing technique has been developed to suppress the magnetic resonance imaging (MRI) artifact arising from object planar rigid motion. In two-dimensional Fourier transform (2-DFT) MRI, rotational and translational motions of the target during magnetic resonance magnetic resonance (MR) scan respectively impose nonuniform sampling and a phase error an the collected MRI signal. The artifact correction method introduced considers the following three conditions: (1) for planar rigid motion with known parameters, a reconstruction algorithm based on bilinear interpolation and the super-position method is employed to remove the MRI artifact, (2) for planar rigid motion with known rotation angle and unknown translational motion (including an unknown rotation center), first, a super-position bilinear interpolation algorithm is used to eliminate artifact due to rotation about the center of the imaging plane, following which a phase correction algorithm is applied to reduce the remaining phase error of the MRI signal, and (3) to estimate unknown parameters of a rigid motion, a minimum energy method is proposed which utilizes the fact that planar rigid motion increases the measured energy of an ideal MR image outside the boundary of the imaging object; by using this property all unknown parameters of a typical rigid motion are accurately estimated in the presence of noise. To confirm the feasibility of employing the proposed method in a clinical setting, the technique was used to reduce unknown rigid motion artifact arising from the head movements of two volunteers.  相似文献   

2.
Imaging heart motion using harmonic phase MRI   总被引:13,自引:0,他引:13  
This paper describes a new image processing technique for rapid analysis and visualization of tagged cardiac magnetic resonance (MR) images. The method is based on the use of isolated spectral peaks in spatial modulation of magnetization (SPAMM)-tagged magnetic resonance images. We call the calculated angle of the complex image corresponding to one of these peaks a harmonic phase (HARP) image and show that HARP images can be used to synthesize conventional tag lines, reconstruct displacement fields for small motions, and calculate two-dimensional (2-D) strain. The performance of this new approach is demonstrated using both real and simulated tagged MR images. Potential for use of HARP images in fast imaging techniques and three-dimensional (3-D) analyses are discussed.  相似文献   

3.
Magnetic resonance imaging (MRI) is a highly advanced and sophisticated imaging modality for cardiac motion tracking and analysis, capable of providing 3D analysis of global and regional cardiac function with great accuracy and reproducibility. In the past few years, numerous efforts have been devoted to cardiac motion recovery and deformation analysis from MR image sequences. Many approaches have been proposed for tracking cardiac motion and for computing deformation parameters and mechanical properties of the heart from a variety of cardiac MR imaging techniques. In this paper, an updated and critical review of cardiac motion tracking methods including major references and those proposed in the past ten years is provided. The MR imaging and analysis techniques surveyed are based on cine MRI, tagged MRI, phase contrast MRI, DENSE, and SENC. This paper can serve as a tutorial for new researchers entering the field.  相似文献   

4.
Magnetic resonance imaging (MRI) has been commonly used for guiding and planning image guided interventions since it provides excellent soft tissue visualization of anatomy and allows motion modeling to predict the position of target tissues during the procedure. However, MRI-based motion modeling remains challenging due to the difficulty of acquiring multiple motion-free 3-D respiratory phases with adequate contrast and spatial resolution. Here, we propose a novel retrospective respiratory gating scheme from a 3-D undersampled high-resolution MRI acquisition combined with fast and robust image registrations to model the nonrigid deformation of the liver. The acquisition takes advantage of the recently introduced golden-radial phase encoding (G-RPE) trajectory. G-RPE is self-gated, i.e., the respiratory signal can be derived from the acquired data itself, and allows retrospective reconstructions of multiple respiratory phases at any arbitrary respiratory position. Nonrigid motion modeling is applied to predict the liver deformation of an average breathing cycle. The proposed approach was validated on 10 healthy volunteers. Motion model accuracy was assessed using similarity-, surface-, and landmark-based validation methods, demonstrating precise model predictions with an overall target registration error of TRE = 1.70 ± 0.94 mm which is within the range of the acquired resolution.  相似文献   

5.
Measuring the local mechanical activity of the heart has lagged behind the measurement of electrical activity due to a lack of measurement tools. Myocardial wall motion abnormalities have been studied for years in the context of regional ischemia. Implanted beads and screws have been used to measure the mechanical activity of the heart in a few isolated regions. Over the past decade, precise and accurate methods for measuring local three-dimensional (3-D) myocardial motion with magnetic resonance imaging (MRI) have been developed using presaturation tagging patterns, velocity encoded phase maps, and displacement encoded phase maps. Concurrently, the quality of cardiac MRI images improved greatly with the use of customized receiver coils and the speed of acquisition has increased dramatically with the advent of undersampling techniques and new generations of MR machines with faster switching gradient coils. The use of these cardiac MRI techniques to produce an image of the local deformation of the heart in the form of a myocardial strain image is described. Using these images, the “mechanical activation” of the heart are defined, that is, the time of onset of contraction. A map of the mechanical activation over the heart is a direct analogy to an electrical activation map of the heart  相似文献   

6.
Mechanical factors such as deformation and strain are thought to play important roles in the maintenance, repair, and degeneration of soft tissues. Determination of soft tissue static deformation has traditionally only been possible at a tissue's surface, utilizing external markers or instrumentation. Texture correlation is a displacement field measurement technique which relies on unique image patterns within a pair of digital images to track displacement. The technique has recently been applied to MR images, indicating the possibility of high-resolution displacement and strain field determination within the mid-substance of soft tissues. However, the utility of MR texture correlation analysis may vary amongst tissue types depending on their underlying structure, composition, and contrast mechanism, which give rise to variations in texture with MRI. In this study, we investigate the utility of a texture correlation algorithm with first-order displacement mapping terms for use with MR images, and suggest a novel index of image "roughness" as a way to decrease errors associated with the use of texture correlation for intra-tissue strain measurement with MRI. We find that a first-order algorithm can significantly reduce strain measurement error, and that an image "roughness" index correlates with displacement measurement error for a variety of imaging conditions and tissue types.  相似文献   

7.
Semi-automatic tracking of myocardial motion in MR tagged images   总被引:3,自引:0,他引:3  
Tissue tagging using magnetic resonance (MR) imaging has enabled quantitative noninvasive analysis of motion and deformation in vivo. One method for MR tissue tagging is Spatial Modulation of Magnetization (SPAMM). Manual detection and tracking of tissue tags by visual inspection remains a time-consuming and tedious process. The authors have developed an interactively guided semi-automated method of detecting and tracking tag intersections in cardiac MR images. A template matching approach combined with a novel adaptation of active contour modeling permits rapid analysis of MR images. The authors have validated their technique using MR SPAMM images of a silicone gel phantom with controlled deformations. Average discrepancy between theoretically predicted and semi-automatically selected tag intersections was 0.30 mm+/-0.17 [mean+/-SD, NS (P<0.05)]. Cardiac SPAMM images of normal volunteers and diseased patients also have been evaluated using the authors' technique.  相似文献   

8.
The goal of Optoelectronics Letters is to rapidly report original, new and important results in the fields of photonics and optoelectronics in English, to advance the international academic exchanges. Optoelectronics Letters pays a particularly attention to the cross topics between photonics and electronics.  相似文献   

9.
基于结构保持的MR图像运动伪影快速抑制方法   总被引:1,自引:0,他引:1  
何宁  吕科  王雪 《电子学报》2013,41(7):1319-1323
目前核磁共振图像运动伪影的校正方法普遍是基于K空间数据的方法,本文提出一种直接对核磁共振图像进行伪影校正的后处理方法.基于非局部均值总变差去噪的思想设计构造了结构保持的运动伪影校正模型,该模型由非局部均值正则项和块相似保真项构成,正则项可以有效去除运动伪影和噪声的同时保持图像的结构;将各向异性结构张量作为块相似保真项中的权函数,实现在不同区域有不同的扩散方式,在去除图像运动伪影的同时保留图像的细节信息.模型的数值求解采用分裂Bregman方法实现.本文提出的方法充分考虑了图像的几何结构特性,实验结果表明,该方法能有效去除运动伪影并保留有价值的图像细节信息,同时提高了运算速度.  相似文献   

10.
Magnetic resonance (MR) diffractive imaging is proposed as a new approach to MR angiography. The expression of the nuclear MR signal is similar to the equation for the Fresnel diffraction of a three-dimensional (3-D) object in light or sound waves. The proposed technique offers the possibility of fast angiographic imaging and the on-line reconstruction of 3-D volumetric images using the holographic technique. Static imaging experiments using an ultra-low-field MRI system are performed to verify the feasibility of the technique. It is shown that the images focused on an arbitrary plane can be reconstructed from data scanned in two dimensions, even though blurred image data is superimposed on the image. Moreover, the 3-D image can be observed in a coherent optical imaging system. This study demonstrates the possibility of the proposed method as a fast imaging technique for MR angiography.  相似文献   

11.
Tracking of cardiac motion using magnetic resonance tagging has attracted increasing attention in recent years. Several methods for tagging the cardiac tissue and tracking the motion of the tags have been developed. However, the choice of tag pattern that minimizes tracking error has received less attention. In this paper, we are concerned with the optimal tagging and acquisition of MR tagged images for cardiac motion analysis. We formulate the measurement of tissue deformation as a multidimensional parametric estimation problem which can be solved using the nonlinear least squares estimator. Along with this, we derive the Cramer-Rao lower bound (CRLB) on the average estimation error variance. We then show that under certain conditions a complex sinusoidal tag shape minimizes the CRLB. We validate our results with computer simulations. Finally, based on the previous findings, we make recommendations concerning the most desirable imaging strategy for images tagged with a complex sinusoidal tag pattern.  相似文献   

12.
Motion artifact correction in MRI using generalized projections   总被引:7,自引:0,他引:7  
An algorithm that suppresses translational motion artifacts in magnetic resonance imaging (MRI) by using post processing on a standard spin-warp image is presented. It is shown that translational motion causes an additional phase factor in the detected signal and that this phase error can be removed using an iterative algorithm of generalized projections. The method has been tested using computer simulations and it successfully removed most of the artifact. The algorithm converges even in the presence of severe noise.  相似文献   

13.
Tagged magnetic resonance imaging (MRI) is unique in its ability to noninvasively image the motion and deformation of the heart in vivo, but one of the fundamental reasons limiting its use in the clinical environment is the absence of automated tools to derive clinically useful information from tagged MR images. In this paper, we present a novel and fully automated technique based on nonrigid image registration using multilevel free-form deformations (MFFDs) for the analysis of myocardial motion using tagged MRI. The novel aspect of our technique is its integrated nature for tag localization and deformation field reconstruction using image registration and voxel based similarity measures. To extract the motion field within the myocardium during systole we register a sequence of images taken during systole to a set of reference images taken at end-diastole, maximizing the normalized mutual information between the images. We use both short-axis and long-axis images of the heart to estimate the full four-dimensional motion field within the myocardium. We also present validation results from data acquired from twelve volunteers.  相似文献   

14.
This paper addresses one of the major problems in interventional magnetic resonance imaging (MRI): the visualization of interventional devices. For visualization locally induced magnetic fields are used, which disturb the homogeneity of the main magnetic field of the MR scanner. This results in signal loss in the vicinity of the device due to intravoxel dephasing, and leads to a disturbance of the phase image. The local fields are established by a low current in a closed copper loop along the device. This method is introduced as a means for catheter visualization. The basic theory behind this method is presented. Simulations are performed to determine the effect of intravoxel dephasing, without interfering effects like susceptibility or radio-frequency artifacts. Scanned and simulated data is used to verify the theoretical consideration. Different configurations of wire loops are discussed and two types of catheter visualization scans are proposed. Results from a pig study show that this methods holds promise for intravascular interventions under MRI guidance  相似文献   

15.
The purpose of this work is to characterize the three-dimensional (3-D) motion of the peritalar joint complex in vivo using magnetic resonance imaging (MRI). Each image data set utilized in this study is made of 60 longitudinal MR slices of the foot in each of eight positions from extreme pronation to extreme supination. We acquired and analyzed ten such data sets from normal subjects, seven data sets from pathological joints and two postoperative data sets. We segmented and formed the surfaces of the calcaneus, talus, cuboid and navicular from all data sets. About 30 geometrical parameters are computed for each joint in each position. The results present features of normal motion and show how normal and abnormal motion can be distinguished. They also show the consequences of surgery on the motion. This non- invasive method offers a unique tool to characterize and quantify the 3-D motion of the rearfoot in vivo from MR images.  相似文献   

16.
We developed a new image reconstruction algorithm for magnetic resonance electrical impedance tomography (MREIT). MREIT is a new EIT imaging technique integrated into magnetic resonance imaging (MRI) system. Based on the assumption that internal current density distribution is obtained using magnetic resonance imaging (MRI) technique, the new image reconstruction algorithm called J-substitution algorithm produces cross-sectional static images of resistivity (or conductivity) distributions. Computer simulations show that the spatial resolution of resistivity image is comparable to that of MRI. MREIT provides accurate high-resolution cross-sectional resistivity images making resistivity values of various human tissues available for many biomedical applications.  相似文献   

17.
The authors address the problem of enhancing hybrid magnetic resonance (MR) images degraded by T2 effects and additive measurement noise. To reduce imaging time, MR signals are acquired using hybrid imaging (HI) sequences such as rapid acquisition relaxation-enhanced (RARE) and fast spin-echo (FSE). With these techniques, T2 effects act as a distortion filter. This T2 filter affects the signal and results in image spatial resolution and/or contrast loss. Furthermore, the amplitude and phase discontinuities in the T2 filter frequency response function may generate serious ringing artifacts. These distortions will damage image quality and affect object detectability. The authors use the Wiener filter and linear prediction (LP) technique to process HI MR signals in the spatial frequency domain (K-space) and the hybrid domain, respectively. Based on the average amplitude symmetry constraint of the spin echo signal, the amplitude frequency response function of the T2 distortion filter can be estimated and used in the Wiener filter for a global T2 amplitude restoration. Then, the linear prediction technique is utilized to obtain the local signal amplitude and phase estimates around the discontinuities of the frequency response function of the T2 filter. These estimates are used to make local amplitude and phase corrections. The effectiveness of this combined technique in correcting T2 distortion and reducing the measurement noise is analyzed and demonstrated using experiments on both phantoms and human studies.  相似文献   

18.
Radio frequency current density imaging (RF-CDI) is a recent MRI technique that can image a Larmor frequency current density component parallel to B(0). Because the feasibility of the technique was demonstrated only for homogeneous media, the authors' goal here is to clarify the electromagnetic assumptions and field theory to allow imaging RF currents in heterogeneous media. The complete RF field and current density imaging problem is posed. General solutions are given for measuring lab frame magnetic fields from the rotating frame magnetic field measurements. For the general case of elliptically polarized fields, in which current and magnetic field components are not in phase, one can obtain a modified single rotation approximation. Sufficient information exists to image the amplitude and phase of the RF current density parallel to B(0) if the partial derivative in the B(0) direction of the RF magnetic field (amplitude and phase) parallel to B(0) is much smaller than the corresponding current density component. The heterogeneous extension was verified by imaging conduction and displacement currents in a phantom containing saline and pure water compartments. Finally, the issues required to image eddy currents are presented. Eddy currents within a sample will distort both the transmitter coil reference system, and create measurable rotating frame magnetic fields. However, a three-dimensional electro-magnetic analysis will be required to determine how the reference system distortion affects computed eddy current images.  相似文献   

19.
We develop a general algorithm for decomposition and compression of grayscale images. The decomposition can be expressed as a functional relation between the original image and the Hadamard waveforms. The dynamic adaptive clustering procedure incorporates potential functions as a similarity measure for clustering as well as a reclustering phase. The latter is a multi-iteration, convergent procedure which divides the inputs into nonoverlapping clusters. These two techniques allow us to efficiently store and transmit a class of half-tone medical images such as magnetic resonance imaging (MRI) of the human brain. Due to the redundant image structure of MRI, obtained after the decomposition and clustering, almost half of the image can be omitted all together. Naturally, the compression rates for this specific type of grayscale image are increased greatly. A run-length coding is performed in order to compress further the retained information from the first two steps. Although all the techniques applied are simple, they represent an efficient way to compress grayscale images. The algorithm exhibits a performance which is competitive and often outperforming some of the methods reported in the literature  相似文献   

20.
Magnetic resonance imaging (MRI) is unique in its ability to noninvasively and selectively alter tissue magnetization, and create tag planes intersecting image slices. The resulting grid of signal voids allows for tracking deformations of tissues in otherwise homogeneous-signal myocardial regions. In this paper, we propose a specific spatial modulation of magnetization (SPAMM) imaging protocol together with efficient techniques for measurement of three-dimensional (3-D) motion of material points of the human heart (referred to as myocardial beads) from images collected with the SPAMM method. The techniques make use of tagged images in orthogonal views by explicitly reconstructing 3-D B-spline surface representation of tag planes (tag planes in two orthogonal orientations intersecting the short-axis (SA) image slices and tag planes in an orientation orthogonal to the short-axis tag planes intersecting long-axis (LA) image slices). The developed methods allow for viewing deformations of 3-D tag surfaces, spatial correspondence of long-axis and short-axis image slice and tag positions, as well as nonrigid movement of myocardial beads as a function of time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号