首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Solder joint reliability under thermal cycling is a key problem in electronic packaging. Accelerated life testing (few cycles, larger temperature excursions) is often a practical necessity in predicting fatigue life in field environments (many cycles, smaller temperature excursions). Complex solder behavior with marked temperature dwell and cycle time influence at slower frequencies makes this a difficult problem. A dynamic model is presented which couples the effect of instability of coarsened grain shear band evolution in microstructure with the change in macroscopic constitutive behavior. Key features of the model include effects of shear band thickness compared with total solder joint thickness, pertinent to small scale design, and frictional resistance at slow deformation rates. Model correlation with test data is discussed and applied to the accelerated life test design.  相似文献   

2.
Solder joint fatigue failure is a serious reliability concern in area array technologies, such as flip chip and ball grid array packages of integrated-circuit chips. The selection of different substrate materials could affect solder joint thermal fatigue life significantly. The mechanism of substrate flexibility on improving solder joint thermal fatigue was investigated by thermal mechanical analysis (TMA) technique and finite element modeling. The reliability of solder joints in real flip chip assembly with both rigid and compliant substrates was evaluated by accelerated temperature cycling test. Finite element simulations were conducted to study the reliability of solder joints in flip chip on flex assembly (FCOF) and flip chip on rigid board assembly (FCOB) applying Anand model. Based on the finite element analysis results, the fatigue lives of solder joints were obtained by Darveaux’s crack initiation and growth model. The thermal strain/stress in solder joints of flip chip assemblies with different substrates were compared. The results of finite element analysis showed a good agreement with the experimental results. It was found that the thermal fatigue lifetime of FCOF solder joints was much longer than that of FCOB solder joints. The thermal strain/stress in solder joints could be reduced by flex buckling or bending and flex substrates could dissipate energy that otherwise would be absorbed by solder joints. It was concluded that substrate flexibility has a great effect on solder joint reliability and the reliability improvement was attributed to flex buckling or bending during temperature cycling.  相似文献   

3.
Solder joint fatigue failure is a serious reliability concern in area array technologies, such as flip chip and ball grid array packages of integrated-circuit chips. The selection of different substrate materials could affect solder joint thermal fatigue lifetime significantly. The reliability of solder joint in flip chip assembly for both rigid and compliant substrates was evaluated by accelerated temperature cycling test. Experimental results strongly showed that the thermal fatigue lifetime of solder joints in flip chip on flex assembly was much improved over that in flip chip on rigid substrate assembly. Debonding area of solder joints in flip chip on rigid board and flip chip on flex assemblies were investigated, and it was found that flex substrate could slow down solder joint crack propagation rate. The mechanism of substrate flexibility on improving solder joint thermal fatigue was investigated by thermal mechanical analysis (TMA) technique. TMA results showed that flex substrate buckles or bends during temperature cycling and this phenomenon was discussed from the point of view of mechanics of the flip chip assembly during temperature cycling process. It was indicated that the thermal strain and stress in solder joints could be reduced by flex buckling or bending and flex substrates could dissipate energy that otherwise would be absorbed by solder joints. It was concluded that substrate flexibility has a great effect on solder joint reliability and the reliability improvement was attributed to flex buckling or bending during temperature cycling.  相似文献   

4.
热循环参数及基板尺寸对焊点可靠性的影响   总被引:4,自引:1,他引:3  
采用Ansys软件建立BGA倒装芯片模型考察焊点的热应力。通过改变热循环保温时间、温度范围和最高温度,研究各参数对焊点热疲劳寿命的影响,同时也考察了基板的长度和厚度的影响。采用Coffin-Manson方程计算并比较热循环寿命。结果表明:随着热循环高低温停留时间、温度范围以及最高热循环温度的增大,热循环寿命减小,最小寿命为879周;同时热循环寿命也随着基板长度和厚度的增大而减小。  相似文献   

5.
焊点的失效模式与分析   总被引:2,自引:0,他引:2  
黄萍 《电子工艺技术》2006,27(4):205-208,211
焊点疲劳寿命通常是通过电子组件进行温度循环加速试验来确定.针对典型元器件进行温度循环试验,在不同的循环周期检查焊点的开裂情况,并采用金相分析观察焊点的显微组织,分析焊点在温度循环条件下的失效模式,为改进工艺参数提供依据.  相似文献   

6.
When an electronic package encounters thermal fluctuations, cyclical shear strain is imposed on the solder joint interconnections. The thermal cycling leads to a condition of thermal fatigue and eventual solder joint failure. This study was performed in order to understand the microstructural mechanisms that lead to solder joint failures in thermal fatigue. Thermal cycling tests were performed on 60Sn-40Pb joints using a -55° C to 125° C cycle and 19% imposed shear strain. A heterogeneously coarsened region of both Pb and Sn-rich phases develops within the 60Sn-40Pb solder joints. Cracks initiate in the heterogeneously coarsened Sn-rich phase at the Sn-Sn grain boundaries. Heterogeneous coarsening and failure occurs in both high (35 to 125° C) and low (-55 to 35° C) thermal cycles. The elevated temperature portion of the thermal cycle was found to be the most significant factor in the heterogeneous coarsening and failure of the solder joints.  相似文献   

7.
Solder joint interconnects are mechanical means of structural support for bridging the various electronic components and providing electrical contacts and a thermal path for heat dissipation. The functionality of the electronic device often relies on the structural integrity of the solder. The dimensional stability of solder joints is numerically predicted based on their mechanical properties. Algorithms to model the kinetics of dissolution and subsequent growth of intermetallic from the complete knowledge of a single history of time-temperature-reflow profile, by considering equivalent isothermal time intervals, have been developed. The information for dissolution is derived during the heating cycle of reflow and for the growth process from cooling curve of reflow profile. A simple and quick analysis tool to derive tensile stress-strain maps as a function of the reflow temperature of solder and strain rate has been developed by numerical program. The tensile properties are used in modeling thermal strain, thermal fatigue and to predict the overall fatigue life of solder joints. The numerical analysis of the tensile properties as affected by their composition and rate of testing, has been compiled in this paper. A numerical model using constitutive equation has been developed to evaluate the interfacial fatigue crack growth rate. The model can assess the effect of cooling rate, which depends on the level of strain energy release rate. Increasing cooling rate from normalizing to water-quenching, enhanced the fatigue resistance to interfacial crack growth by up to 50% at low strain energy release rate. The increased cooling rates enhanced the fatigue crack growth resistance by surface roughening at the interface of solder joint. This paper highlights salient features of process modeling. Interfacial intermetallic microstructure is affected by cooling rate and thereby affects the mechanical properties.  相似文献   

8.
板厚影响通孔再流焊点抗热疲劳性能的试验研究   总被引:1,自引:0,他引:1  
针对不同板厚的通孔再流焊点进行了热冲击的可靠性测试,以非破坏性和破坏性的试验方式,对比分析了板厚对通孔再流焊点的抗热疲劳能力的影响。结果表明,热膨胀系数(CTE)失配是焊点产生裂纹的主要原因,使得板厚严重影响着焊点的抗热疲劳性能:厚板焊点断裂程度重于薄板焊点,其循环后的强度下降也快于后者,但二者的电性能变化差异不大。  相似文献   

9.
Solder joint thermal fatigue failure is a major concern for area array technologies such as flip chip and ball grid array technologies. Solder joint geometry is an important factor influencing thermal fatigue lifetime. In this paper, the effects of solder joint shape and height on thermal fatigue lifetime are studied. Solder joint fatigue lifetime was evaluated using accelerated temperate cycling and adhesion test. Scanning electron microscopy (SEM), energy dispersive x-ray analysis (EDX), scanning acoustic microscopy (nondestructive evaluation) and optical microscopy were utilized to examine the integrity of the joint and to detect cracks and other defects before and during accelerated fatigue tests. Our accelerated temperature cycling test clearly shows that solder joint fatigue failure process consists of three phases: crack initiation, crack propagation and catastrophic failure. Experimental results indicated that both hourglass shape and great standoff height could improve solder joint fatigue lifetime, with standoff height being the more effective factor. Experimental data suggested that shape is the dominant factor affecting crack initiation time while standoff height is the major factor influencing crack propagation time.  相似文献   

10.
Microstructural studies of thermomechanically fatigued actual electronic components consisting of metallized alumina substrate and tinned copper lead, soldered with Sn-Ag or 95.5Ag/4Ag/0.5Cu solder were carried out with an optical microscope and environmental scanning electron microscope (ESEM). Damage characterization was made on samples that underwent 250 and 1000 thermal shock cycles between −40°C and 125°C, with a 20 min hold time at each extreme. Surface roughening and grain boundary cracking were evident even in samples thermally cycled for 250 times. The cracks were found to originate on the free surface of the solder joint. With increased thermal cycles these cracks grew by grain boundary decohesion. The crack that will affect the integrity of the solder joint was found to originate from the free surface of the solder very near the alumina substrate and progress towards and continue along the solder region adjacent to the Ag3Sn intermetallic layer formed with the metallized alumina substrate. Re-examination of these thermally fatigued samples that were stored at room temperature after ten months revealed the effects of significant residual stress due to such thermal cycles. Such observations include enhanced surface relief effects delineating the grain boundaries and crack growth in regions inside the joint.  相似文献   

11.
The lap-shear technique is commonly used to evaluate the shear, creep, and thermal fatigue behavior of solder joints. We have conducted a parametric experimental and modeling study, on the effect of testing and geometrical parameters on solder/copper joint response in lap-shear. It was shown that the farfield applied strain is quite different from the actual solder strain (measured optically). Subtraction of the deformation of the Cu substrate provides a reasonable approximation of the solder strain in the elastic regime, but not in the plastic regime. Solder joint thickness has a profound effect on joint response. The solder response moves progressively closer to “true” shear response with increasing joint thickness. Numerical modeling using finite-element analyses were performed to rationalize the experimental findings. The same lap-shear configuration was used in the simulation. The input response for solder was based on the experimental tensile test result on bulk specimens. The calculated shear response, using both the commonly adopted far-field measure and the actual shear strain in solder, was found to be consistent with the trends observed in the lap-shear experiments. The geometric features were further explored to provide physical insight into the problem. Deformation of the substrate was found to greatly influence the shear behavior of the solder.  相似文献   

12.
This paper reports on an experimental study on how thermal cycling aging exposure changes the solder joint microstructure, intermetallic layer thickness and the residual shear strength and fatigue life in a single plastic ball grid array (PBGA) solder joint specimen. The single BGA solder joint specimen was specially designed to evaluate the microstructure and mechanical properties of three different batches of solder joint after subjected to 0, 500, 1000, and 2000 cycles of thermal cycling aging (-40°C to 125°C). It is important to relate the effects of thermal cycling aging on the changes of the microstructural and intermetallic layer thickness to the residual shear strength and fatigue life of solder joints subjected to thermal cycling aging exposure. The results of this study shows that the microstructural and intermetallic development due to thermal cycling aging has a major impact on the residual mechanical and fatigue strength of the solder joint. It was noted that the solder joint shear strength and residual fatigue life degrades with exposure to thermal cycling aging  相似文献   

13.
The microstructure evolution of Sn-Ag-Cu solder joints during aging and thermal cycling is studied, with a focus on the Sn grain orientation in plastic ball grid array (PBGA) packages. Thermally cycled PBGA packages with a full array of 196 solder joints were examined after being subjected to various pre-conditions. Each PBGA package was polished to obtain plan-view cross- sections of each solder joint. Solder joints were characterized using both polarized optical microscopy and orientation imaging microscopy (OIM). The observations reveal that the distribution of single and multigrain Sn microstructure as a function of position in the package is dependent on the sample’s preconditions and thermal cycle history. Based on distribution maps from polarized optical microscopy observation, thermal aging has a relatively small impact on the overall fraction of single-grained solder joints. Thermal cycling, however, can cause many single-grained joints to transform into multigrained solder joints. The dependence of the grain structure distribution on different preconditions and evolution of the grain structures during thermal cycling are discussed.  相似文献   

14.
In this paper, the shear cycle fatigue properties of plastic ball grid array (PBGA) assemblies' solder joints reflowed with three different profiles, and aged at 125°C for four, nine, 16, 25, and 36 days are studied. The profiles were devised to have the same "heating factor," which was defined as the integral of the measured temperature above the liquidus (183°C) with respect to dwell time in the reflow profile, but to have different conveyor speeds. The effects of conveyor speed on the solder joint (nonaged and aged) fatigue lifetimes were investigated. It was found hat with increasing the conveyor speed the solder joint shear fatigue lifetime could be improved substantially. Also, the shear fatigue lifetimes of aged solder joints decreased with increasing aging time and variation in fatigue lifetimes increased for faster conveyor speed. SEM and optical micrographs show that faster cooling rate caused a rougher interface of solder/IMC and less crystallization microstructure in solder joints. Rougher interface solder joints have a longer nonaged fatigue life. The thickness of IMC increases with increasing aging time and the growth rate for solder with faster cooling rate was larger. SEM cross section views reveal that cracks initiated at the acute position near the solder pad, then propagated along the interface of the bulk solder/IMC layer. Thicker IMC layers deteriorated fatigue life, so the fatigue lifetime variation of aged solder joints with fast cooling rate was larger  相似文献   

15.
Thermal cycle tests were performed for chip scale package (CSP) solder joints with Sn–37mass%Pb under several thermal cycle conditions. Under the conventional thermal cycle conditions, which heat up to approximately 100 °C, microstructure coarsening occurred and solder joints were fractured. The thermal fatigue lives followed the modified Coffin–Manson equation. The exponential factors m and n, and the activation energy Q in that equation were evaluated as 0.33, −1.9 and 15.5 kJ/mol, respectively. When the maximum temperature is room temperature and the temperature range is very narrow, the solder joint fracture occurred without microstructure coarsening, and the thermal fatigue life does not follow the modified Coffin–Manson equation.  相似文献   

16.
对比封装体不同的热疲劳寿命预测模型,选择适用于微弹簧型陶瓷柱栅阵列(CCGA)封装的寿命预测模型,并对焊点的热疲劳机制进行分析。利用Workbench对焊点进行在温度循环载荷作用下的热疲劳分析。对比不同热疲劳寿命预测模型的结果,表明基于应变能密度的预测模型更适用于微弹簧型CCGA。随后对等效应力、塑性应变、平均塑性应变能密度和温度随时间变化的曲线进行分析,结果表明,在温度保持阶段,焊柱通过发生塑性变形或积累能量来降低其内部热应力水平,减少热疲劳损伤累积;在温度转变阶段,焊柱的应力应变发生剧烈变化,容易产生疲劳损伤。  相似文献   

17.
Solder joint reliability was one of the top priorities when evaluating the reliability of electronic packages. In general, an acceleration model would be used to predict solder joint fatigue life in the use conditions. However, the accuracy of the model was difficult to validate. As a result, the fatigue life of the solder joints could be over-designed with added cost or time, or under-estimated with a compromised reliability performance. It was an important goal for engineers to use valid and accurate life models to predict the field life of the solder joints and reduce development cost and time.Many empirical models including Norris-Landzberg model and its modifications usually considered the effects of temperature range, the cycle frequency, and the maximum temperature. No matter what the package structures were or the materials were used, engineers had been using the same model parameters for many years. Moreover, little was done to validate the models for modern packages structures and materials.In this article, a variety of package was studied and the failure data was analyzed through a reliability engineering approach. The results showed that the available model parameters were not suitable to predict the solder joint life of test samples exclusively. A new set of model parameters might be required for certain cases. Also, the acceleration factor models would depend on the solder joint materials and microstructures. The solder joint fatigue life performance was too complicated to be assumed as a fixed empirical model. One of the reasons was there were too many factors affecting the strain which the solder joints would endure.In the future study, critical factors such as materials or structures could be integrated into the current model format. Additionally, the ramp rate could be a concern especially when dealing with cases under thermal shock conditions. The methodology to develop an acceleration factor model and the demonstration of their weakness would help achieve reliable solder connections in the future.  相似文献   

18.
In this paper the influence of the temperature cycle time history profile on the fatigue life of ball grid array (BGA) solder joints is studied. Temperature time history in a Pentium processor laptop computer was measured for a three-month period by means of thermocouples placed inside the computer. In addition, Pentium BGA packages were subjected to industry standard temperature cycles and also to in-situ measured temperature cycle profiles. Inelastic strain accumulation in each solder joint during thermal cycling was measured by high sensitivity Moire interferometry technique. Results indicate that fatigue life of the solder joint is not independent of the temperature cycle profile used. Industry standard temperature cycle profile leads to conservative fatigue life observations by underestimating the actual number of cycles to failure.  相似文献   

19.
A study was performed to examine the effect of burn-in and Au-plating thickness on the shear strength of 63Sn-37Pb solder joints in ball grid array (BGA) packages. The Au-plating thicknesses of 0.3 μm, 0.6 μm, 0.9 μm, and 1.4 μm were evaluated. An isothermal aging temperature of 150°C was employed to simulate burn-in conditions. The evolution of the bulk solder microstructure and intermetallic compounds at the solder joint interface were characterized and correlated to the measured shear strength. The strength of the solder joints with 0.3-μm Au plating was approximately three times higher than the thicker platings after aging. Solder joints with 0.3-μm Au plating failed within the solder matrix, and their strength was dependent upon the bulk solder microstructure and composition. The weakness of the solder joints with thicker Au platings was attributed to the formation of a brittle AuSn4/Ni3Sn4 interface and a ductile Pb-rich layer at the interface.  相似文献   

20.
The RF SiP module based on LTCC substrate has attracted considerable attention in wireless communications for the last two decades. However, the thermo-mechanical reliability of this 3D LTCC architecture has not been well-studied as common as its traditional ceramic package structure. A practical RF SiP module based on LTCC substrate was presented and its thermo-mechanical reliability was analyzed in this paper, with emphasis on the reliability of heat reflow process, the operating state and fatigue of second-level solder joints. The configuration and assembly process of the SiP module were briefly introduced at first, and qualitative analysis was made according to the reliability problem that may occur in the manufacturing process and the operating state. Through FEM simulation, this paper studied the warpage and stress variation of the RF SiP module, as well as parametric studies of some key package dimensions. Solder joint reliability under temperature cycling condition was also analyzed in particular in this paper. The results show that for the heat reflow process and operating state, the maximum warpage is both on the top LTCC substrate, but the maximum stresses are on the outermost solder ball and the kovar column at the corner, respectively. There is a large residual stress on the critical solder ball at the end of the reflow process and the key package dimensions has little effect on it. The thickness of top LTCC substrate has a significant impact on the thermal deformation and thermal stress, followed by the height of kovar columns. The reason for the considerable thermal stress on the kovar column is the non-uniform of temperature distribution. The key to reducing thermal deformation and stress in the operating state is the employment of effective cooling measures. It is found by comparison that the reliability of critical solder joints can be greatly improved by adding suitable underfill.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号