首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of brain-derived neurotrophic factor (BDNF) on glutamate-induced cytotoxicity were examined using primary cultures of rat cortical neurons. BDNF induced TrkB tyrosine phosphorylation in rat cultured cortical neurons. The cell viability was significantly reduced when cultures were briefly exposed to glutamate and incubated with normal medium for 24 h. Glutamate cytotoxicity was prevented by MK-801, which is a non-competitive blocker of N-methyl-D-aspartate and N(omega)-nitro-L-arginine, which is a blocker of nitric oxide synthetase. Delayed neurotoxicity was also induced by ionomycin, a calcium ionophore, and nitric oxide (NO) donors such as S-nitrosocysteine (SNOC) and 3-morpholinosydnonimine (SIN-1). Incubating cultures with BDNF for 10 min to 24 h protected cortical neurons against glutamate neurotoxicity. The protective effects of BDNF against glutamate cytotoxicity were dependent on both its concentrations and incubation time. BDNF also prevented the ionomycin-, SNOC-, and SIN-1 induced cytotoxicity. These results indicate that BDNF protects cultured cortical neurons from NMDA receptor-mediated glutamate neurotoxicity by reducing cytotoxic action of NO.  相似文献   

2.
High-affinity NMDA receptor glycine recognition site antagonists protect brain tissue from ischemic damage. The neuroprotective effect of 5-nitro-6,7-dichloro-2,3-quinoxalinedione (ACEA 1021), a selective NMDA receptor antagonist with nanomolar affinity for the glycine binding site, was examined in rat cortical mixed neuronal/glial cultures. ACEA 1021 alone did not alter spontaneous lactate dehydrogenase (LDH) release. Treatment with ACEA 1021 (0.1-10 microM) before 500 microM glutamate, 30 microM NMDA, or 300 microM kainate exposure was found to reduce LDH release in a concentration-dependent fashion. These effects were altered by adding glycine to the medium. Glycine (1 mM) partially reversed the effect of ACEA 1021 on kainate cytotoxicity. Glycine (100 microM-1 mM) completely blocked the effects of ACEA 1021 on glutamate and NMDA cytotoxicity. The glycine concentration that produced a half-maximal potentiation of excitotoxin-induced LDH release in the presence of 1.0 microM ACEA 1021 was similar for glutamate and NMDA (18 +/- 3 and 29 +/- 9 microM, respectively). ACEA 1021 also reduced kainate toxicity in cultures treated with MK-801. The effects of glycine and ACEA 1021 on glutamate-induced LDH release were consistent with a model of simple competitive interaction for the strychnine-insensitive NMDA receptor glycine recognition site, although nonspecific effects at the kainate receptor may be of lesser importance.  相似文献   

3.
Previous work with recombinant receptors has shown that the identity of the NMDA NR2 subunit influences receptor affinity for both glutamate and glycine. We have investigated the developmental change in NMDA receptor affinity for both glutamate and glycine in acutely dissociated parietal cortex neurons of the rat, together with the expression during ontogeny of NR2A and NR2B mRNA and protein. Whereas there is little change in NMDA receptor glutamate affinity with age, a population of NMDA receptors emerges in 14- and 28-d-old animals with a markedly reduced affinity for glycine (mKD = approximately 800 nM) and a reduced sensitivity to the NR2B subunit-selective NMDA antagonist ifenprodil. These changes are paralleled by a developmental increase in the expression of NR2A. Thus, in mature animals a population of NMDA receptors appears with a lower affinity for glycine that might not be saturated under normal physiological conditions. Ifenprodil (10 microM) inhibits virtually all of the NMDA receptor-evoked current in very young neurons that contain a single population of receptors exhibiting a high affinity for glycine (mKD = approximately 20 nM). In older neurons, which contain NMDA receptors with both high and low affinities for glycine, ifenprodil (10 microM) inhibits both the high-affinity population and a significant proportion of the low-affinity component, thus revealing three pharmacologically distinct populations of NMDA receptors in single neurons. Moreover, these observations suggest that ifenprodil might bind with high affinity to NMDA receptors containing both NR2A and NR2B subunits as well as those containing only NR2B.  相似文献   

4.
AIM: To investigate age related alterations in glutamate N-methyl-D-aspartate (NMDA) receptor binding produced by the modulatory compounds glutamate, glycine, and magnesium (Mg2+) sulphate. METHODS: The effects produced by glutamate plus glycine, and Mg2+ on the binding of [3H]MK-801, a ligand for the N-methyl-D-aspartate ion channel phencyclidine site, were measured in membrane preparations made from prefrontal cortex from human neonate (n = 5), infant (n = 6), and adult (n = 6) necropsy brains. RESULTS: Neonatal brains had the least [3H]MK-801 binding, suggesting either a low density of NMDA receptors or a more restricted access of [3H]MK-801 to cation channel sites. Infant brains had the most [3H]MK-801 binding which was stimulated to a greater extent by L-glutamate (100 microM) and glycine (10 microM) than in neonatal and adult brains. MG2+ invariably inhibited [3H]MK-801 binding. However, the Mg2+ IC50 value was higher in neonatal brain (3.6 mM) than infant (1.4 mM) and adult (0.87 mM) brains. CONCLUSION: Infant brain may have excess NMDA receptors which are hyper responsive to glutamate and glycine. The lower potency of Mg2+ to inhibit [3H]MK-801 binding in neonatal cortex may be because newborn babies have NMDA receptors without the normal complement of Mg2+ sites. The findings suggest that therapeutic NMDA receptor block in neonates requires higher concentrations of magnesium sulphate in brain tissue.  相似文献   

5.
It has been reported that glutamate-induced neurotoxicity is related to an increase in nitric oxide (NO) concentration. An NO-sensitive electrode has been developed to measure NO concentration directly. Using this electrode, we examined NO concentration and neuronal survival after glutamate application in rat cultured cortical neurons. We also examined the effects of NMDA receptor antagonists, MK-801 and ketamine, and the NO synthetase inhibitor, L-NMMA on NO production and neuronal death. After 7 days in culture, application of glutamate (1 mM) or L-arginine (0.3 mM) to the cultured medium increased NO concentration, and decreased the number of anti-microtubule-associated protein 2 positive neurons. Both pretreatment with MK-801 (300 microns) and ketamine (300 microns) prevented glutamate-, but not L-arginine-induced increase in NO concentration and neuronal death. L-NMMA prevented both glutamate- and L-arginine-induced NO production and neuronal death. The nitric oxide donor, S-nitroso-N-acetyl-D,L-penicillamine (SNAP) also caused neuronal death, and MK-801, ketamine and L-NMMA did not prevent SNAP-induced toxicity. We have demonstrated excitatory amino acid-induced changes of NO concentration and the parallel relationship between changes of NO concentration and neuronal death. In conclusion, an increase in NO concentration does induce neuronal death, and the inhibition of the production of NO prevents glutamate-induced neuronal death.  相似文献   

6.
The interaction of Ro 25-6981 with N-methyl-D-aspartate (NMDA) receptors was characterized by a variety of different tests in vitro. Ro 25-6981 inhibited 3H-MK-801 binding to rat forebrain membranes in a biphasic manner with IC50 values of 0.003 microM and 149 microM for high- (about 60%) and low-affinity sites, respectively. NMDA receptor subtypes expressed in Xenopus oocytes were blocked with IC50 values of 0.009 microM and 52 microM for the subunit combinations NR1C & NR2B and NR1C & NR2A, respectively, which indicated a >5000-fold selectivity. Like ifenprodil, Ro 25-6981 blocked NMDA receptor subtypes in an activity-dependent manner. Ro 25-6981 protected cultured cortical neurons against glutamate toxicity (16 h exposure to 300 microM glutamate) and combined oxygen and glucose deprivation (60 min followed by 20 h recovery) with IC50 values of 0.4 microM and 0.04 microM, respectively. Ro 25-6981 was more potent than ifenprodil in all of these tests. It showed no protection against kainate toxicity (exposure to 500 microM for 20 h) and only weak activity in blocking Na+ and Ca++ channels, activated by exposure of cortical neurons to veratridine (10 microM) and potassium (50 mM), respectively. These findings demonstrate that Ro 25-6981 is a highly selective, activity-dependent blocker of NMDA receptors that contain the NR2B subunit.  相似文献   

7.
Amino acid concentration in the anterior preoptic area and medial basal hypothalamus was determined by HPLC in female rats: (1) at 16 (prepubertal) vs. 30 (peripubertal) days of age and (2) after N-methyl-D-aspartate (NMDA) or dizocilpine (MK-801) administration in both groups. 30-day-old rats had higher levels of aspartate (Asp; 24%), glutamate (Glu; 49%) and glycine (Gly; 44%) and lower levels of taurine (Tau; 43%) than 16-day-old rats. In 16-day-old rats, NMDA (30 mg/kg, s.c., 10 min) increased the Glut concentration (48%). This effect was prevented by MK-801 pretreatment (1 mg/kg, s.c., 1 h), which did not modify amino acid concentrations per se. In 30-day-old rats, NMDA treatment increased Glut (24%) and asp (42%) levels. MK-801 pretreatment abolished NMDA-induced changes and reduced Tau (26%) and Gly (30%) levels. MK-801 administration alone reduced the concentration of Glut (39%), Asp (54%), Tau (33%) and Gly (31%). It is concluded that both (1) the concentration of Asp, Glu, Gly and Tau and (2) the changes induced by NMDA receptor activation or blockade are different at 16 vs. 30 days of age. The existence of a tonic (positive) control on amino acid levels linked to the NMDA receptor which would be immature or absent at 16 days of age is suggested.  相似文献   

8.
Glutamate transport in nearly pure rat cortical neurons in culture (less than 0.2% astrocytes) is potently inhibited by dihydrokainate, l-serine-O-sulphate, but not by l-alpha-amino-adipate. This system allows for a test of the hypothesis that glutamate transport is important for protecting neurons against the toxicity of endogenous synaptically released glutamate. In support of this hypothesis, a 20-24 h exposure to 1 mm dihydrokainate reduced cell survival to only 14.8 +/- 9.8% in neuronal cultures (P < 0.001; n = 3), although it had no effect on neuronal survival in astrocyte-rich cultures (P > 0.05; n = 3). Dihydrokainate also significantly caused accumulation of glutamate in the extracellular medium of cortical neuronal cultures (6.6 +/- 4.9 micrometer, compared to 1.2 +/- 0.3 micrometer in control, n = 14, P < 0.01). The neurotoxicity of dihydrokainate was blocked by 10 micrometer MK-801, 10 micrometer tetrodotoxin, and an enzyme system that degrades extracellular glutamate. The latter two also abolished the accumulation of glutamate in the extracellular medium. Dihydrokainate (1 mm) inhibited the 45calcium uptake stimulated by 30 micrometer N-methyl-d-aspartate (NMDA), but not by higher concentrations consistent with a weak antagonist action of dihydrokainate at the NMDA receptor. Whole cell recordings showed that 1 mm dihydrokainate produced approximately 25% inhibition of 30 micrometer NMDA-induced current in cortical neurons. Dihydrokainate (1 mm) alone generated a small current (17% of the current produced by 30 micrometer NMDA) that was blocked by 30 micrometer 5,7-dichlorokynurenate and only weakly by 10 micrometer cyano-7-nitroquinoxaline-2,3-dione (CNQX). These results suggest that the toxicity of dihydrokainate in neuronal cultures is due to its ability to block glutamate transport in these cultures, and that dihydrokainate-sensitive neuronal glutamate transport may be important in protecting neurons against the toxicity of synaptically released glutamate.  相似文献   

9.
Despite substantial data on radioligand binding to the sigma receptor, neither the physiologic function nor the intracellular mechanism of this receptor is known. In this study, we examined the effect of sigma ligands on Ca++ influx induced by N-methyl-D-aspartate (NMDA) in single primary cultured rat frontal cortical neurons with fluorescence video microscopy. All sigma ligands tested reduced the NMDA-induced increase in intracellular Ca++ concentration ([Ca++]i) in a dose-dependent manner with IC50 values in the low micromolar range. Inhibition by haloperidol and (+)-N-cyclopropylmethyl-N-methyl-1,4-diphenyl-1-ethyl-but-3-en-1-ylam ine hydrochloride (JO1784) was noncompetitive; but, exogenous glycine (100 microM) did not alter their IC50 values. In addition, haloperidol (1 microM) enhanced Mg+(+)-mediated inhibition of the NMDA-induced [Ca++]i increase (IC50 = 0.45 +/- 0.01 mM vs. an IC50 = 0.98 +/- 0.06 mM for Mg++ alone). Selective sigma receptor ligands (JO1784, (+)-pentazocine) caused a greater reduction of the sustained phase of the Ca++ response to NMDA, whereas haloperidol and DTG reduced both the initial and sustained phase of the response to a similar degree. The rank order of potencies for inhibition of both the sustained Ca++ response phase and (+)-[3H]SKF-10047 binding (Roman et al., J. Pharm. Pharmacol. 42: 439-440, 1989) were similar. These findings suggest that sigma 1 ligands indirectly modulate NMDA receptor complex function through sigma 1 receptors and that sigma ligands facilitate the desensitization of the Ca++ response to NMDA.  相似文献   

10.
We examined the effects of nicotine on glutamate-induced cytotoxicity using primary cultures of rat cortical neurons. The cell viability decreased significantly when cultures were exposed to glutamate for 10 min and then incubated with glutamate-free medium for 1 h. The exposure of cultures to nicotine (10 microM) for 8-24 h prior to glutamate application ameliorated the glutamate-induced cytotoxicity, with no significant effect of nicotine alone on the cell viability. Neuroprotection by nicotine was dependent on the incubation period. alpha-bungarotoxin (alpha-BTX) and methyllycaconitine (MLA), both of which are alpha7-neuronal receptor antagonists, and dihydro-beta-erythroidine (DHbetaE), a neuronal central nervous system (CNS) receptor antagonist, each significantly antagonized the protection by nicotine against glutamate-induced cytotoxicity. Ionomycin, a calcium ionophore, and S-nitrosocysteine (SNOC), a nitric oxide (NO) donor, also induced cytotoxicity in a manner similar to glutamate. Nicotine protected cultures against ionomycin-induced cytotoxicity, but not against SNOC-induced cytotoxicity. These results suggest that nicotine protects cultured cortical neurons against glutamate-induced cytotoxicity via alpha7-neuronal receptors and neuronal CNS receptors by reducing NO-formation triggered by Ca2+ influx.  相似文献   

11.
The characteristics of binding sites in rat cerebral cortical synaptic membranes labeled by 125I-ifenprodil, a noncompetitive NMDA receptor antagonist, are described. 125I-ifenprodil was synthesized using Na125I in the presence of chloramine-T and purified by paper chromatography. Binding of the 125I-ligand was optimal at pH 7.7 in 5 mM Tris.HCl buffer. Equilibrium binding of 125I-ifenprodil was displaced by spermine (1 mM) but not by ifenprodil or its analogue, SL 82.0715 (both 16.7 microM). Zn2+, Ca2+, and Mg2+ inhibited specific binding of 125I-ifenprodil in a concentration-dependent manner, with IC50 values of 0.11, 1.1, and 1.7 mM, respectively. The dissociation constant (KD) for unlabeled ifenprodil determined by saturation binding was 205 nM. Scatchard plots of saturation data appeared curvilinear but were best described by a single-binding-site model (Hill coefficient = 0.95), with a density of binding sites (Bmax) of 141 pmol/mg of protein. Binding of 125I-ifenprodil was inhibited by polyamines, with a rank potency order of spermine > spermidine > putrescine = 1,3-diaminopropane. The pattern of inhibition produced by spermidine was apparently competitive. Ifenprodil congeners also fully inhibited polyamine-sensitive binding of 125I-ifenprodil, with a rank potency order of ifenprodil > SL 82.0715 = tibalosine > nylidrin = isoxsuprine. It was found that sigma/antitussive agents partially inhibited specific binding, but inclusion of the sigma drug GBR 12909 had little effect on the binding of 125I-ifenprodil, suggesting this site was not involved. The binding site labeled by 125I-ifenprodil is polyamine sensitive, has a discrete pharmacological profile, and apparently is unrelated to the sigma site.  相似文献   

12.
Excessive stimulation of the N-methyl-d-aspartate (NMDA)-type glutamate receptor has been implicated in the neuronal death resulting from focal hypoxia-ischemia. Certain neurosteroids, steroids synthesized de novo in the central nervous system (CNS), have been shown to modulate the action of neurotransmitters at their cellular receptors. Pregnenolone sulfate (PS) is an abundant neurosteroid that enhances the current evoked by NMDA. Using the Ca2+-sensitive fluorescent dye, Fluo-3, AM, and a trypan blue exclusion assay, we evaluated the ability of PS to modulate NMDA-induced changes in intracellular free calcium concentration ([Ca2+]i) and neuronal death in primary cultures of rat hippocampal neurons. The results demonstrate that PS potentiates NMDA-induced increases in [Ca2+]i by 150%. Further, PS exacerbates the MK-801-sensitive neuronal death produced by acute (PS EC50=37 microM) or chronic NMDA exposure, reducing the EC50 of NMDA from 13 to 4 microM under chronic exposure conditions, whereas pregnenolone is ineffective. Our results show that PS, or related sulfated neurosteroids, may play a role in the onset of excitotoxic neuronal death in vivo.  相似文献   

13.
Aromatic analogs of arcaine were shown to have inhibitory effects on the binding of the channel blocking drug [3H]MK-801 to the NMDA receptor complex. The most potent compound of the series was an N,N'-bis(propyl)guanidinium which inhibited [3H]MK-801 binding with an IC50 of 0.58 microM and an IC50 of 12.17 microM upon addition of 100 microM spermidine. The increase in IC50 upon addition of spermidine suggests competitive antagonism between the inhibitor and spermidine at the arcaine-sensitive polyamine site of the NMDA receptor complex.  相似文献   

14.
The inhibition of N-methyl-D-aspartate (NMDA)-activated current in cultured fetal rat hippocampal neurons by Pb2+ was investigated at various stages of cell development. Pb2+ selectively inhibited NMDA currents recorded from young cultured neurons. In the first week of culture, Pb2+ showed the most prominent inhibition, which was gradually attenuated in the following weeks. Pb2+'s action was selective for NMDA- as opposed to either kainate- or quisqualate-induced currents. The current-voltage relationship for NMDA-induced currents in the presence of Pb2+ revealed that the effect of this cation was voltage-independent, which suggested that the site of interaction of Pb2+ with the NMDA receptor/channel is located outside the membrane electric field. Single channel studies showed that Pb2+ reduced the frequency but not the lifetime of the NMDA-activated single channel currents. Further evaluation of the mechanism of action of Pb2+ on the NMDA receptor demonstrated that this cation is a noncompetitive antagonist of both NMDA and glycine. We have demonstrated that the NMDA-induced whole cell currents change along with cell development, and the effects of Pb2+ are also dependent upon age of culture. The NMDA-induced currents in cultured rat hippocampal neurons had two components, one that decayed rapidly and another that decayed slowly. The fast component was clearly observed at concentrations of glycine higher than 1 microM, whereas the slow component reached its maximum amplitude at the glycine concentration of 1 microM. Moreover, the rapidly decaying component of NMDA-evoked whole cell currents was predominant in young cultured neurons, and its contribution to the total current was reduced in old cultured neurons.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The polyamine spermine has multiple effects on N-methyl-D-aspartate (NMDA) receptors, including "glycine-independent" stimulation, which is seen in the presence of saturating concentrations of glycine; "glycine-dependent" stimulation, which is due to an increase in the affinity of the receptor for glycine; and voltage-dependent block. These effects may involve three separate polyamine binding sites on the receptor. To identify amino acid residues that are important for spermine binding, we used site-directed mutagenesis to alter amino acids in and around a region of the NR1 subunit of the NMDA receptor that shows homology with PotD, a polyamine binding protein from Escherichia coli. Mutated subunits, expressed in heteromeric and homomeric NMDA receptors, were studied by voltage-clamp recording in Xenopus oocytes. Mutation of two acidic residues (E339-E342) to neutral amino acids reduced or abolished glycine-independent stimulation by spermine without affecting glycine-dependent stimulation or voltage-dependent block by spermine. Mutation of these residues also had modest effects on sensitivity to protons and to ifenprodil but did not alter sensitivity to glutamate and glycine or to voltage-dependent block by Mg2+. Residue E342 in NR1 appears to be critical for glycine-independent spermine stimulation. Mutations at equivalent positions in NR2A(E352Q) or NR2B(E353Q) had no effect on sensitivity to spermine, pH, or ifenprodil. Residue E342 in NR1 may form part of a discrete spermine binding site on the NMDA receptor or be involved in the mechanism of modulation by polyamines. This residue may also be involved in modulation by protons and ifenprodil.  相似文献   

16.
Activation of ion channel-linked glutamate receptors, especially N-methyl-D-aspartate (NMDA) receptors, mediates the excitotoxic effects of glutamate upon central neurons. We examined the hypothesis that activation of group I metabotropic glutamate receptors (mGluRs) would increase NMDA receptor-mediated cortical neuronal death. Addition of the selective group I mGluR agonists, dihydroxyphenylglycine (DHPG) or trans-azetidine-2,4-dicarboxylic acid (t-ADA) potentiated NMDA-induced neuronal death, and application of the group I mGluR-selective antagonist, aminoindan-1,5-dicarboxylic acid (AIDA), as well as the non-selective antagonists methyl-4-carboxyphenylglycine (MCPG) or 4-carboxyphenylglycine (4CPG) reduced NMDA- and kainate-induced neuronal death in murine cortical cultures. The pro-excitotoxic effect of group I mGluR activation may be mediated largely by enhancement of glutamate release, as DHPG potentiated high potassium-stimulated glutamate release, and the protective effects of both AIDA and MCPG were abolished when NMDA and alpha-amino-3-hydroxy-5-methyl-4-isoxazole proprionic acid (AMPA) receptors were blocked immediately after toxic NMDA receptor overstimulation. The present data support the possibility that antagonizing group I mGluRs may be a useful strategy for attenuating excitotoxic neuronal death in certain disease states.  相似文献   

17.
The dopaminergic antagonist haloperidol has an eight- to 10-fold higher affinity for NMDA receptors containing the NR2B (epsilon2) subunit, showing the same subunit specificity as ifenprodil, polyamines, and magnesium. In the present study, we have compared the effects of mutations altering polyamine and ifenprodil sensitivity on haloperidol sensitivity of NMDA receptors. As seen for spermidine stimulation, high-affinity haloperidol inhibition is governed by the region around amino acid 198, based on results from chimeric murine NR2A/NR2B (epislon1/epsilon2) receptors. Mutation of epsilon2E201 in this region to asparagine or arginine causes a 10-fold decrease in the ability of haloperidol to inhibit 125I-MK-801 binding. Epsilon2E201 does not govern the interactions of ifenprodil, because all of the mutants at epsilon2E201 exhibited wild-type affinity for ifenprodil. Mutation of epsilon2R337 causes a 400-fold loss in apparent affinity for ifenprodil but does not change the effects of haloperidol. The structural determinants of spermidine stimulation do not perfectly match those for haloperidol inhibition, as mutations of E200 remove haloperidol inhibition but do not alter polyamine stimulation. The present results thus demonstrate that although spermidine, haloperidol, and ifenprodil share subunit selectivity and overlapping pharmacology, they also have specific structural determinants.  相似文献   

18.
To study the role of acidic residues in modulation of NMDA receptors by spermine, we used site-directed mutagenesis of receptor subunits and voltage-clamp recording in Xenopus oocytes. Sixteen glutamate and aspartate residues, located in the first two thirds of the putative extracellular loop of the NR1A subunit, were individually mutated. This region of NR1A shows homology with bacterial amino acid binding proteins, a bacterial polyamine binding protein, and a bacterial spermidine acetyltransferase. Mutation of D669 to asparagine (D669N), alanine (D669A), or glutamate (D669E) abolished the "glycine-independent" form of spermine stimulation in heteromeric NR1A/NR2B receptors. These mutations also markedly reduced inhibition by ifenprodil and by protons at NR1A/NR2B receptors. Mutations at the equivalent position (D690) in NR1B, which contains the insert encoded by exon 5, reduced the pH sensitivity of NR1B/NR2B receptors. Thus, the effects of mutations at D669 are not prevented by the presence of exon 5, and the influence of exon 5 is not prevented by mutations at D669 (D690 in NR1B). Mutations at NR1A (D669) had little or no effect on the potencies of glutamate and glycine and did not alter voltage-dependent block by Mg2+ or the "glycine-dependent" form of spermine stimulation. Surprisingly, the D669N and D669A mutations, but not the D669E mutation, reduced voltage-dependent block by spermine at NR1A/NR2 receptors. Mutations in NR2B at a position (D668) equivalent to D669 did not alter spermine stimulation or sensitivity to pH and ifenprodil. However, mutations D668N and D668A but not D668E in NR2B reduced voltage-dependent block by spermine. Screening of the negative charges at NR1A(D669) and NR2B(D668) may be involved in voltage-dependent block by spermine. D669 in NR1A could form part of a binding site for polyamines and ifenprodil and/or part of the proton sensor of the NMDA receptor. Alternatively, this residue may be critical for coupling of modulators such as spermine, protons, and ifenprodil to channel gating.  相似文献   

19.
Pregnenolone sulfate (PS) acts as a positive allosteric modulator of N-methyl-D-aspartate (NMDA) receptor-mediated responses. In the retina, we previously observed that the synthesis of pregnenolone and PS increases after stimulation of NMDA receptors and blockade of the synthesis reduces retinal cell death. This study was carried out to explore in the isolated and intact retina the possible role of PS in NMDA-induced excitotoxicity. Lactate dehydrogenase (LDH) measurements and morphological analysis revealed that a 90-min exogenous application of PS at 0.1-500 microM concentrations potentiated NMDA-induced cell death and at 50-500 microM concentrations caused cytotoxicity. After 45 min, either NMDA or PS caused no significant LDH release; but their co-application resulted in a high degree of toxicity. In addition, we found that a mild NMDA insult developed into serious damage when even low PS concentrations (0.1-10 microM) were used. Toxicity-inducing and -potentiating effects were specific to PS modulatory action on NMDA receptors, in that they were blocked by 4-(3-phosphonopropyl)2-piperazinecarboxylic acid (CPP) and MK-801 but not by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), and neither dehydroepiandrosterone sulfate nor pregnenolone caused LDH release. Prevention of degenerative signs was seen in retinae pretreated with 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), a Cl- channel blocker, thus indicating a Na+/Cl--dependent acute mode of excitotoxic cell death responsible for PS toxicity. The positive interaction between the neurosteroid and NMDA receptors was further proved by a PS dose-dependent increase in NMDA-induced stimulation of [3H] MK-801 binding to retinal membranes. The results suggest a crucial role of PS in retinal vulnerability and propose the toxicity-potentiating effects as an important key in linking NMDA-induced endogenous synthesis to acute excitotoxicity.  相似文献   

20.
Excessive activation of NMDA receptors is thought to mediate the calcium-dependent neurotoxicity associated with hypoxic-ischemic brain injury, trauma, epilepsy, and several neurodegenerative diseases. For this reason, various NMDA antagonists have been investigated for their therapeutic potential in these diseases, but heretofore none have proven to be both effective and safe. In the present study, memantine, an adamantane derivative similar to the antiviral drug amantadine, is shown to block the channels activated by NMDA receptor stimulation. From whole-cell and single-channel recording experiments, the mechanism of action of memantine is deduced to be open-channel block, similar to MK-801; however, unlike MK-801, memantine is well tolerated clinically. Compared to MK-801, memantine's safety may be related to its faster kinetics of action with rapid blocking and unblocking rates at low micromolar concentrations. Furthermore, at these levels memantine is an uncompetitive antagonist and should theoretically allow near-normal physiological NMDA activity throughout the brain even in the face of pathologically high focal concentrations of glutamate. These pharmacological properties confer upon memantine a therapeutic advantage against NMDA receptor-mediated neurotoxicity with few side effects compared with other organic NMDA open-channel blockers. Moreover, memantine is increasingly effective against escalating levels of glutamate, such as those observed during a stroke. Low micromolar concentrations of memantine, levels known to be tolerated by patients receiving the drug for the treatment of Parkinson's disease, prevent NMDA receptor-mediated neurotoxicity in cultures of rat cortical and retinal ganglion cell neurons; memantine also appears to be both safe and effective in a rat stroke model. These results suggest that memantine has considerable therapeutic potential for the myriad of clinical entities associated with NMDA receptor-mediated neurotoxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号