首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 93 毫秒
1.
随着信息技术的不断发展,人们生活发生了翻天覆地的变化,它给人们带来了很多便利,但与此同时,安全问题也日益突出。目前,传统的入侵检测系统已经不足以完成对越来越复杂的网络攻击的检测任务。入侵监测系统技术之中引入机器学习,可以有效地提高系统性能。文章主要介绍了几种机器学习方法在入侵检测中的应用。  相似文献   

2.
网络应用的出现和普及给人们的生活和工作带来了很大的便利,但网络安全问题也随之而来.网络入侵的频率越来越高,已严重危害了人们日常网络的使用安全.目前,许多基于支持向量机(Support Vector Machine,SVM)的入侵检测算法被广泛用于快速准确地识别入侵,但其性能在训练时间和分类精度方面表现不够优良.为了提高...  相似文献   

3.
郭楚栩  施勇  薛质 《通信技术》2020,(2):421-426
在入侵检测系统发展的30年间,不断有新的检测方法被提出。在如今的第四次工业革命——人工智能的潮流中,机器学习算法为各种系统的方法解决提供了新的思路。基于2018年Daniel Fraunholz等人提出了的入侵检测模型,提出了一种基于机器学习的端口扫描检测系统,其中系统的特征提取参考了KDD Cup 99数据集中数据的特征提取,而其中的模型训练集是基于CICIDS2017数据集的。最后,模型测试结果优良。  相似文献   

4.
入侵检测旨在监测计算机系统、网络或应用程序中的未经授权、恶意或异常活动,以及识别可能的安全威胁和入侵行为。本文基于Elman神经网络构建入侵检测的模型,以提高模型入侵检测的性能。通过实证检验,与常用的XGBoost模型相比,在准确率上提高6.67%,误报率上降低3.93%,在漏报率上降低1.39%,在AUC上提高0.137。  相似文献   

5.
崔远  杨波  葛宁 《电子科技》2006,(12):45-48
在分别对ART-2神经网络和入侵检测原理进行介绍的基础上,指出用ART-2神经网络作为入侵检测系统检测算法的可行性.利用KDD CUP-99数据集对算法进行了Matlab仿真.实验表明,该入侵检测算法可实现较高的检测率和较低的误检率.  相似文献   

6.
《现代电子技术》2018,(3):124-127
网络入侵的频率越来越高,严重危害了网络安全。为了获得高正确率的网络入侵检测结果,针对当前网络入侵检测模型的局限性,提出基于机器学习算法的网络入侵检测模型,通过机器学习算法中性能优异的支持向量机构建"一对一"的网络入侵检测分类器,采用当前标准网络入侵检测数据库对模型的有效性进行验证,网络入侵检测正确率高达95%以上,检测误差远远低于实际应用范围,可以应用于实际的网络安全管理中。  相似文献   

7.
构建了一类二层式神经模糊推理系统的入侵检测模型,能同时实现误用检测和异常检测.系统采用可进化的模糊C均值聚类法(FCMm)获取并管理模糊规则.构造底层的基于神经模糊网络的多个并行神经模糊分类器结构,顶层的Mamdani模糊推理系统实现最终入侵行为判断.仿真结果证明该检测模型的有效性.  相似文献   

8.
首先介绍了人工神经网络和遗传算法的基本原理,进行分析后将这两种方法相结合提出一种GABP遗传神经网络算法及其实现过程,并将其应用于入侵检测中,和传统的BP神经网络相比具有较好的效果。  相似文献   

9.
李淑慧 《现代电子技术》2010,33(1):78-80,83
改进的进化神经网络算法是采用双种群的进化规则,同时完成对权值和结构的进化,其特点是加快算法的收敛速度,在一定程度上克服了BP算法陷入局部最小点的不足。将该算法应用于入侵检测领域中,建立一个基于改进的进化神经网络入侵检测系统模型,并用KDDCUP99数据测试了该模型中改进的进化神经网络分类器引擎,与基于BP神经网络和传统的进化神经网络等相比,得到了较高的检测率。  相似文献   

10.
探讨了如何将遗传算法应用于智能入侵检测技术,详细论述了其具体过程以及诸参数的计算方法,特别是染色体的构造以及交叉和突变这两类算子的应用。该算法在对网络连接信息进行编码时同时考虑了空间和时间信息,从而能够检测较为复杂的入侵行为。  相似文献   

11.
网络入侵检测技术研究   总被引:3,自引:0,他引:3  
对入侵检测作较全面的综述性介绍,首先从入侵、入侵检测的概念出发,接着介绍入侵检测的分类和入侵检测系统的模型,最入对入侵检测的各种方法进行简要分析。  相似文献   

12.
郑毅 《现代电子技术》2006,29(21):98-99,102
入侵检测系统是保障网络信息安全的重要手段,针对现有的入侵检测技术存在的不足,提出了基于机器学习的入侵检测系统的实现方案。简要介绍了几种适合用于入侵检测系统中的机器学习算法,重点阐述了基于神经网络和数据挖掘技术的入侵检测系统的性能特点。指出了在基于机器学习的入侵检测系统中,系统构造是一个关键环节。  相似文献   

13.
Wireless Mesh Networks is vulnerable to attacks due to the open medium, dynamically changing network topology, cooperative algorithms, lack of centralized monitoring and management point. The raditional way of protecting networks with firewalls and encryption software is no longer sufficient and effective for those features. In this paper, we propose a distributed intrusion detection approach based on timed automata. A cluster-based detection scheme is presented, where periodically a node is elected as the monitor node for a cluster. These monitor nodes can not only make local intrusion detection decisions, but also cooperatively take part in global intrusion detection. And then we construct the Finite State Machine (FSM) by the way of manually abstracting the correct behaviors of the node according to the routing protocol of Dynamic Source Routing (DSR). The monitor nodes can verify every node's behavior by the Finite State Machine (FSM), and validly detect real-time attacks without signatures of intrusion or trained data. Compared with the architecture where each node is its own IDS agent, our approach is much more efficient while maintaining the same level of effectiveness. Finally, we evaluate the intrusion detection method through simulation experiments.  相似文献   

14.
入侵检测系统中的特征选择是一个组合优化问题。为了有效地进行特征选择,提出一种结合进化思想的免疫算法。算法中的免疫记忆单元确保了快速收敛于全局最优解,算法中的均匀交叉操作则体现了进化的思想。提出一个基于神经网络的入侵检测系统模型.该模型具有多分类.易于更新系统使其快速适应新型入侵的特点。在KDDCUP’99上的实验表明该算法是有效的。  相似文献   

15.
A Method for Anomaly Detection of User Behaviors Based on Machine Learning   总被引:1,自引:0,他引:1  
1Introduction Intrusiondetectiontechniquescanbecategorizedinto misusedetectionandanomalydetection.Misusedetec tionsystemsmodelattacksasspecificpatterns,anduse thepatternsofknownattackstoidentifyamatchedac tivityasanattackinstance.Anomalydetectionsystems u…  相似文献   

16.
将一种基于支持向量机的Boosting算法应用于入侵检测,并通过KDD’99数据的仿真实验将它与单一的支持向量机分类器进行比较,结果表明Boosting算法比单一的支持向量机分类器具有更好的检测效果。  相似文献   

17.
针对支持向量机理论中存在的问题:训练样本数量多以及必须满足MerCer条件等,提出了一种基于相关向量机(RVM)的网络入侵检测方法。首先采用“删除特征”法对KDD99数据集中的41个特征进行评级,筛选出针对不同入侵类型的重要特征和非重要特征,然后只选择重要特征进行匹配。结果表明,这种方法与基于支持向量机(SVM)的入侵检测模型相比,具有更高的检测率和更低的误警率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号