共查询到17条相似文献,搜索用时 78 毫秒
1.
压电陶瓷驱动器的蠕变误差随时间呈现非线性变化,难以实时修正。提出基于BP神经网络的压电陶瓷蠕变预测方法,使用压电陶瓷驱动系统采集数据,对数据进行归一化处理,通过实验设计BP神经网络的隐含层数、隐含层节点数、节点转移函数和训练函数,构建BP神经网络预测模型,建立压电陶瓷蠕变与时间的关系。用BP神经网络模型对压电陶瓷蠕变进行了预测仿真,并将结果与实测数据进行了对比。结果表明,蠕变预测结果与实验数据的最大绝对误差均小于0.1 μm,最大蠕变误差均不超过0.6%,最大均方误差仅为0.0021,可见,BP预测模型具有较高的预测精度,可作为预测压电陶瓷蠕变误差的一种有效手段。 相似文献
2.
本文针对变频压缩机的功率测量困难,测量误差大等问题,提出了一种仿真测量模型。利用粒子群算法寻找全局最优粒子,用它初始化BP神经网络的阈值和权值,测量变频压缩机的功率。本文共建立了3种仿真模进行对比,分别为BP神经网络模型、GA-BP神经网络模型和PSO-BP神经网络模型,然后分别通过3种模型的内插、蒸发温度外推和冷凝温度外推的测试方法对变频压缩机进行功率测量,对比分析其预测结果的平均相对误差和拟合程度。结果表明:基于粒子群算法优化的BP神经网络模型明显优于其他两个模型,特别是在冷凝温度外推测试中,较其他两个神经网络相对误差降低了1. 11%、2. 64%,3种测试方法下的平均相对误差均小于1%,拟合程度在0. 9以上,表明基于粒子群算法优化的BP神经网络模型对变频压缩机功率有较好的测量能力,而且有较强的泛化能力。 相似文献
3.
现在纹理图像分离效率比较低,为解决这个问题,提出一种基于反向传播神经网络的纹理图像分离算法。一些因素会影响的结果是RGB值图像分离的象素的颜色本身,它附近的像素、边界的概率。根据这些因素,我们构建一个模型,用BP神经网络训练功能区域的图像和噪音一组样本,训练之后,BP神经网络训练可以用于纹理图像分离。最后我们设计一种实验,利用BP神经网络分离三个纹理图像。实验结果表明该算法简单、可行的、可以降低人们的工作。 相似文献
4.
可以以较为精准的预测结果为依据来对股票市场进行及时指引与调控,这样更能保障我国国民经济的可持续顺利发展.本文的目的 是研究改进的基于粒子群优化算法的改进版BP神经网络股票预测,这种神经网络预测方法是以粒子群优化算法为基础并将其应用于股市预测,取得了较好的效果.详细给出了基于粒子群算法的神经网络模型的建立方法,同时本文还... 相似文献
5.
本文主要介绍数据挖掘技术的概念、过程和BP神经网络算法的原理,研究如何将BP神经网络与数据挖掘技术相结合,从海量数据中挖掘出潜在有用价值的信息,阐述了数据挖掘技术与神经网络结合的关键技术和实现方法,并提出一种改进的BP神经网络算法以实现有用模式的挖掘,能大大缩短训练时问和提高挖掘精度。 相似文献
6.
7.
8.
9.
10.
11.
12.
针对移动机器人路径规划中使用蚁群算法(ACO)易陷入局部最优和收敛速度慢的问题,提出了一种适用于机器人静态路径寻优的改进免疫遗传优化蚁群算法(IMGAC)。该算法可以根据实际情况自动调整变异概率和变异方式,以及自动调节个体免疫位的长度,将通过改进的变异算子和免疫算子嵌入蚁群算法来提高全局寻优能力与收敛速度。仿真及实验表明:相比于经典ACO算法以及最大最小蚂蚁系统,IMGAC算法收敛速度更快,全局寻优能力更强。利用该算法寻找移动机器人最优路径,提高了静态路径寻优的效果和效率。 相似文献
13.
14.
目的 提高BP神经网络对电喷印过程中液滴铺展行为的预测能力。方法 提出一种鲸鱼优化算法(WOA)优化BP神经网络的液滴铺展预测模型。首先,采用相场方法建立电场作用下液滴铺展的数值模型,并通过实验验证仿真结果的准确性。然后,选取初始直径、撞击速度、接触角和电场强度作为神经网络的输入参数,将最大铺展直径作为神经网络的输出参数,利用鲸鱼优化算法优化神经网络中的初始权值和阈值,构建液滴铺展预测模型。最后,基于仿真结果对预测模型进行训练与测试,并将其与传统的BP神经网络模型进行对比分析。结果 相较于传统BP神经网络预测模型,WOA–BP神经网络预测模型的平均绝对误差、均方根误差分别降低了72.60%、77.60%,而平均绝对百分比误差则从15.029 3%减小为4.585 3%。结论 WOA–BP神经网络预测模型可以更好地预测液滴铺展,可为液滴铺展的预测提供新的方法。 相似文献
15.
火电厂SCR脱硝系统的设计需要在满足脱硝效率的同时,尽可能节约成本,因此需要准确预测SCR脱硝所需的催化剂体积。火电厂的烟气条件复杂多变,烟气温度、烟气流量、出入口NOx浓度等参数都会影响SCR催化剂的体积设计,因此催化剂体积预测是一个多因素耦合的问题。针对这一特点,使用BP神经网络对催化剂体积设计进行了预测,并针对该模型结构上的缺陷,进行基于遗传算法优化的神经网络建模研究。结果表明,遗传算法优化后的BP神经网络模型预测精度和数据拟合能力均有提高,为脱硝系统的催化剂体积设计提供了新思路。 相似文献
16.