共查询到20条相似文献,搜索用时 10 毫秒
1.
近年来,深度学习在计算机视觉领域中的表现优于传统的机器学习技术,而图像分类问题是其中最突出的研究课题之一。传统的图像分类方法难以处理庞大的图像数据,且无法满足人们对图像分类精度和速度的要求,而基于深度学习的图像分类方法突破了此瓶颈,成为目前图像分类的主流方法。从图像分类的研究意义出发,介绍了其发展现状。其次,具体分析了图像分类中最重要的深度学习方法(即自动编码器、深度信念网络与深度玻尔兹曼机)以及卷积神经网络的结构、优点和局限性。再次,对比分析了方法之间的差异及其在常用数据集上的性能表现。最后,探讨了深度学习方法在图像分类领域的不足及未来可能的研究方向。 相似文献
2.
张震 《信息技术与信息化》2023,(6):121-124
深度迁移学习技术是通过深度神经网络从一项任务中获得的知识来解决其他相关任务,作为机器学习的一种研究方向,已经得到广泛应用。文章首先介绍了在自然语言处理任务中深度迁移学习应用于文本分类的背景,深度迁移学习的定义,其次通过文献分析了近几年深度迁移学习以实例、映射、网络和对抗四种迁移方式及在文本分类中应用的现状,最后对借助深度迁移学习模型完成文本分类任务的应用进行总结和展望。 相似文献
3.
与传统的机器学习模型相比,深度学习模型试图模仿人的学习思路,通过计算机自动进行海量数据的特征提取工作。文本分类是自然语言处理中的一个重要应用,在文本信息处理过程中具有关键作用。过去几年,使用深度学习方法进行文本分类的研究激增并取得了较好效果。文中简要介绍了基于传统模型的文本分类方法和基于深度学习的文本分类方法,回顾了先进文本分类方法并重点关注了其中基于深度学习的模型,对近年来用于文本分类的深度学习模型的研究进展以及成果进行介绍和总结,并对深度学习在文本分类领域的发展趋势和研究的难点进行了总结和展望。 相似文献
4.
5.
6.
7.
雷达通过发射天线发射电磁波,经过不同物体反射接收到相应的反射波,对其接收结果进行分析,能得到物体距雷达的位置,径向运动速度等信息,所以对雷达信号的分析具有重要的研究意义。近些年深度学习成为各个领域的研究热点,而在雷达领域同样可通过深度学习算法实现对信号的相应的信息处理。与传统方法相比,深度学习算法具有自动提取深层特征、获取较高准确率等优势。该文具体介绍了近期典型的深度学习算法在雷达信号处理中的应用及研究情况。此外,该文介绍了两个在雷达领域中应用深度学习亟待解决的问题,即过拟合和可解译性。 相似文献
8.
本文利用高光谱图像的空间-光谱维信息,结合主动学习算法实现高光谱图像分类。该算法利用较少的训练样本获得较高的分类精度,与此同时,该算法的运算过程复杂度高且计算效率非常低。针对这一特点,本文提出了一种利用图像处理器(Graphic processing units,GPUs)对算法进行数据级并行计算优化。并且利用真实场景的高光谱图像对文中提出的并行计算优化方案进行了实验验证,结果表明该方法在保证与串行分类精度一致的情况下,其计算加速比达到34倍左右,验证了基于GPU的高光谱图像分类算法的有效性。 相似文献
9.
10.
近年来,深度神经网络模型的安全性与鲁棒性成为了备受关注的重要问题。从前人们常探讨的对抗样本攻击,在物理世界中真正实施攻击的能力较弱,这促使了对抗补丁攻击的出现。文中介绍了图像分类模型中典型的对抗补丁攻击与防御方法相关研究,对其中的特点进行了分析,最后总结了对抗补丁研究中仍存在的主要挑战,并对未来的研究方向进行了展望。 相似文献
11.
12.
文章首先介绍了前馈网络的基本原理。然后通过一个XOR小例子讨论部署一个前馈网络所需的每个设计决策。最后去面对那些只出现在前馈网络中的设计决策。 相似文献
13.
14.
15.
复杂背景图像受背景干扰后不易被识别。针对这一问题,文中提出了基于前景分割机制的卷积神经网络图像分类方法。采用全卷积神经网络对图像前景区域进行自动分割,通过图像中前景区域周围的最小边界框对其进行定位。对于定位的前景区域,构建卷积神经网络对其进行处理以区分不同的类别,从而实现复杂背景图像的分类。将提出方法在公开数据集中提取的单一背景和复杂背景图像数据集上进行对比实验,并使用迁移学习与数据增强等方法优化模型。实验结果表明,所提方法使用前景区域分割相比于仅分类CNN具有更高的准确度,且复杂背景图像上的准确度提升幅度要远大于单一背景图像。该结果说明引入前景区域分割对于复杂背景图像分类模型准确度的提升具有一定帮助,能够显著前景区域特征并减少背景因素的干扰。 相似文献
16.
17.
18.
近年来,深度学习在图像处理和数据分析等方面取得了巨大的进展。针对传统遥感估计农作物种植面积统计方法时效性差、依赖人工操作经验、耗费人力资源等问题,以Sentinel-2卫星遥感影像为数据基础,提出了一种基于深度学习的农作物种植区域分类方法。实验以从背景中提取出花生种植区域为目标,首先对Sentinel-2遥感影像数据进行预处理,然后用人工目视解译的方法标注遥感影像中种植花生的区域,将标注后的图像输入到图像分割网络中进行训练,最后将测试图像输入到训练好的分割网络,获得测试结果:检测准确率为89.20%,检测召回率为79.22%。 相似文献
19.
本文首先介绍了三种经典的深度学习算法,然后介绍了遥感影像分类与识别的基本方法,接着论述了基于深度学习的遥感影像分类和识别的研究现状,最后对未来深度学习技术在遥感应用领域中的发展方向进行了总结。 相似文献
20.
深度学习被引入机器学习领域与大数据的完美结合加快了人工智能实现的涉伐,近年来备受学术界和工业界的广泛关注.从深度学习的3种经典模型出发,主要做了5方面的工作:第一,针对深度信念网络,从网络结构(隐含层数、RBM结构、DBN级联),学习算法(基本算法、优化算法与其他方法结合),硬件系统(GPU,FPGA)三个方面进行总结;第二,针对卷积神经网络,从网络结构(输入层、隐含层、CNN个数),学习算法,硬件系统三个方面进行归纳;第三,针对堆栈自编码器,以时间为轴对其发展进行梳理,阐述相应自编码器的方法改进;第四,从医学图像分割、医学图像识别和计算机辅助诊断3个方面详细探讨深度学习在医学图像分析领域中的应用;最后从大数据浪潮、模型构建、特征学习、应用拓展4个方面对深度学习的发展进行展望. 相似文献