共查询到20条相似文献,搜索用时 15 毫秒
1.
近年来,深度学习在计算机视觉领域中的表现优于传统的机器学习技术,而图像分类问题是其中最突出的研究课题之一。传统的图像分类方法难以处理庞大的图像数据,且无法满足人们对图像分类精度和速度的要求,而基于深度学习的图像分类方法突破了此瓶颈,成为目前图像分类的主流方法。从图像分类的研究意义出发,介绍了其发展现状。其次,具体分析了图像分类中最重要的深度学习方法(即自动编码器、深度信念网络与深度玻尔兹曼机)以及卷积神经网络的结构、优点和局限性。再次,对比分析了方法之间的差异及其在常用数据集上的性能表现。最后,探讨了深度学习方法在图像分类领域的不足及未来可能的研究方向。 相似文献
2.
张震 《信息技术与信息化》2023,(6):121-124
深度迁移学习技术是通过深度神经网络从一项任务中获得的知识来解决其他相关任务,作为机器学习的一种研究方向,已经得到广泛应用。文章首先介绍了在自然语言处理任务中深度迁移学习应用于文本分类的背景,深度迁移学习的定义,其次通过文献分析了近几年深度迁移学习以实例、映射、网络和对抗四种迁移方式及在文本分类中应用的现状,最后对借助深度迁移学习模型完成文本分类任务的应用进行总结和展望。 相似文献
3.
与传统的机器学习模型相比,深度学习模型试图模仿人的学习思路,通过计算机自动进行海量数据的特征提取工作.文本分类是自然语言处理中的一个重要应用,在文本信息处理过程中具有关键作用.过去几年,使用深度学习方法进行文本分类的研究激增并取得了较好效果.文中简要介绍了基于传统模型的文本分类方法和基于深度学习的文本分类方法,回顾了先进文本分类方法并重点关注了其中基于深度学习的模型,对近年来用于文本分类的深度学习模型的研究进展以及成果进行介绍和总结,并对深度学习在文本分类领域的发展趋势和研究的难点进行了总结和展望. 相似文献
4.
5.
6.
7.
雷达通过发射天线发射电磁波,经过不同物体反射接收到相应的反射波,对其接收结果进行分析,能得到物体距雷达的位置,径向运动速度等信息,所以对雷达信号的分析具有重要的研究意义。近些年深度学习成为各个领域的研究热点,而在雷达领域同样可通过深度学习算法实现对信号的相应的信息处理。与传统方法相比,深度学习算法具有自动提取深层特征、获取较高准确率等优势。该文具体介绍了近期典型的深度学习算法在雷达信号处理中的应用及研究情况。此外,该文介绍了两个在雷达领域中应用深度学习亟待解决的问题,即过拟合和可解译性。 相似文献
8.
本文利用高光谱图像的空间-光谱维信息,结合主动学习算法实现高光谱图像分类。该算法利用较少的训练样本获得较高的分类精度,与此同时,该算法的运算过程复杂度高且计算效率非常低。针对这一特点,本文提出了一种利用图像处理器(Graphic processing units,GPUs)对算法进行数据级并行计算优化。并且利用真实场景的高光谱图像对文中提出的并行计算优化方案进行了实验验证,结果表明该方法在保证与串行分类精度一致的情况下,其计算加速比达到34倍左右,验证了基于GPU的高光谱图像分类算法的有效性。 相似文献
9.
10.
时间序列分类(TSC)是数据挖掘领域中最重要且最具有挑战性的任务之一.深度学习技术在自然语言处理和计算机视觉领域已取得革命性进展,同时在时间序列分析等其他领域也显示出巨大的潜力.该文对基于深度学习的时间序列分类的最新研究成果进行了详细综述.首先,定义了关键术语和相关概念.其次,从多层感知机、卷积神经网络、循环神经网络和注意力机制4个网络架构角度分类总结了当前最新的时间序列分类模型,及各自优点和局限性.然后,概述了时间序列分类在人体活动识别和脑电图情绪识别两个关键领域的最新进展和挑战.最后,讨论了将深度学习应用于时间序列数据时未解决的问题和未来研究方向.该文为研究者了解最新基于深度学习的时间序列分类研究动态、新技术和发展趋势提供了参考. 相似文献
11.
近年来,深度神经网络模型的安全性与鲁棒性成为了备受关注的重要问题。从前人们常探讨的对抗样本攻击,在物理世界中真正实施攻击的能力较弱,这促使了对抗补丁攻击的出现。文中介绍了图像分类模型中典型的对抗补丁攻击与防御方法相关研究,对其中的特点进行了分析,最后总结了对抗补丁研究中仍存在的主要挑战,并对未来的研究方向进行了展望。 相似文献
12.
13.
罗枭 《智能计算机与应用》2020,(4):133-137
本文对深度神经网络模型做了简单介绍;阐述了自然语言处理研究领域中所使用的深度学习方法及研究进展和成果;重点介绍当前最新的预训练语言模型.并对深度学习在自然语言处理领域的发展趋势和有待深入研究的难点进行了总结及展望. 相似文献
14.
文章首先介绍了前馈网络的基本原理。然后通过一个XOR小例子讨论部署一个前馈网络所需的每个设计决策。最后去面对那些只出现在前馈网络中的设计决策。 相似文献
15.
16.
17.
复杂背景图像受背景干扰后不易被识别。针对这一问题,文中提出了基于前景分割机制的卷积神经网络图像分类方法。采用全卷积神经网络对图像前景区域进行自动分割,通过图像中前景区域周围的最小边界框对其进行定位。对于定位的前景区域,构建卷积神经网络对其进行处理以区分不同的类别,从而实现复杂背景图像的分类。将提出方法在公开数据集中提取的单一背景和复杂背景图像数据集上进行对比实验,并使用迁移学习与数据增强等方法优化模型。实验结果表明,所提方法使用前景区域分割相比于仅分类CNN具有更高的准确度,且复杂背景图像上的准确度提升幅度要远大于单一背景图像。该结果说明引入前景区域分割对于复杂背景图像分类模型准确度的提升具有一定帮助,能够显著前景区域特征并减少背景因素的干扰。 相似文献
18.
19.
复杂背景图像受背景干扰后不易被识别。针对这一问题,文中提出了基于前景分割机制的卷积神经网络图像分类方法。采用全卷积神经网络对图像前景区域进行自动分割,通过图像中前景区域周围的最小边界框对其进行定位。对于定位的前景区域,构建卷积神经网络对其进行处理以区分不同的类别,从而实现复杂背景图像的分类。将提出方法在公开数据集中提取的单一背景和复杂背景图像数据集上进行对比实验,并使用迁移学习与数据增强等方法优化模型。实验结果表明,所提方法使用前景区域分割相比于仅分类CNN具有更高的准确度,且复杂背景图像上的准确度提升幅度要远大于单一背景图像。该结果说明引入前景区域分割对于复杂背景图像分类模型准确度的提升具有一定帮助,能够显著前景区域特征并减少背景因素的干扰。 相似文献