首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《微型机与应用》2016,(5):22-25
近年来,基于互联网技术的云计算的应用日趋成熟,诸多开源的云平台不断出现。异构分布式环境中,在面对不同情况时,如何保障负载均衡已经成为云计算研究中的重要研究方向。本文提出了一种基于DAG(Directed Acyclic Graph)的异构分布式系统的任务调度策略。该算法通过资源效益度的竞争,从筛选后的资源池中选择恰当的资源节点进行任务分配,以此提高系统的负载均衡能力。通过实验表明,该任务调度算法可以有效降低通信开销,提高资源利用率,提升负载均衡能力,为整个系统提供高效的性能。  相似文献   

2.
为了解决传统的多目标优化算法难以很好实现企业的实际决策需要问题,针对混合流水线车间调度(HFSP)的多目标优化调度问题,提出了一种新的多目标遗传算法。根据企业实际需求,采用分模块两层建模的思想,将多目标分为约束性目标和优化性目标。算法根据目标性质的不同分别进行不同的搜索。最后将新算法应用于HFSP多目标优化问题进行实例验证。结果表明,所提出的算法具有很好的可行性,与其他多目标优化方法相比,该算法具有明显的优越性、实用性和可操作性。  相似文献   

3.
4.
云计算环境下基于改进遗传算法的任务调度算法   总被引:13,自引:0,他引:13  
李建锋  彭舰 《计算机应用》2011,31(1):184-186
在云计算中面对的用户群是庞大的,要处理的任务量与数据量也是十分巨大的。如何对任务进行高效的调度成为云计算中所要解决的重要问题。针对云计算的编程模型框架,提出了一种具有双适应度的遗传算法(DFGA),通过此算法不但能找到总任务完成时间较短的调度结果,而且此调度结果的任务平均完成时间也较短。通过仿真实验将此算法与自适应遗传算法(AGA)进行比较,实验结果表明,此算法优于自适应遗传算法,是一种云计算环境下有效的任务调度算法。  相似文献   

5.
云任务调度是云计算研究的一个热点。云任务调度方法的好坏直接影响云平台的整体性能。提出一种基于模板遗传算法(TBGA)的任务调度方法。首先,根据处理机的运算速度和带宽等条件,计算出每个处理机应分配的任务量模板大小;然后,根据模板大小将任务集合中的任务划分为多个子集合;最后,利用遗传算法将集合中的任务分配到对应的处理机。实验证明通过此方法能得到总任务完成时间较短的调度结果。通过仿真实验将TBGA算法与Min-Min算法和遗传算法(GA)进行比较,实验结果表明,TBGA算法与Min-Min算法相比任务集合完成时间降低了20%左右,与遗传算法相比任务集合完成时间降低了30%左右,是一种有效的任务调度算法。  相似文献   

6.
云计算环境下基于遗传蚁群算法的任务调度研究   总被引:1,自引:0,他引:1  
对云计算中任务调度进行了研究,针对云计算的编程模型框架,提出一种融合遗传算法与蚁群算法的混合调度算法。在该求解方法中,遗传算法采用任务-资源的间接编码方式,每条染色体代表一种具体调度方案;选取任务平均完成时间作为适应度函数,再利用遗传算法生成的优化解,初始化蚁群信息素分布。既克服了蚁群算法初期信息素缺乏,导致求解速度慢的问题,又充分利用遗传算法的快速随机全局搜索能力和蚁群算法能模拟资源负载情况的优势。通过仿真实验将该算法和遗传算法进行比较,实验结果表明,该算法是一种云计算环境下有效的任务调度算法。  相似文献   

7.
云服务提供商在给用户提供海量虚拟资源的同时,也面临着一个现实的问题,即怎样调度这些资源,以最小的代价(完工时间、执行费用、资源利用率等)完成工作流的执行。针对IaaS环境下的工作流调度问题,以完工时间和执行费用作为目标,提出了一种基于分解的多目标工作流调度算法。该算法结合了基于列表的启发式算法和多目标进化算法的选择过程,采用一种分解方法,将多目标优化问题分解为一组单目标优化子问题,然后同时求解这些单目标子问题,使得调度过程更为简单有效。算法利用天马项目发布的现实世界中的工作流进行实验,结果表明,和MOHEFT算法以及NSGA-II*算法相比较,所提出的算法能得到更优的Pareto解集,同时具有更低的时间复杂度。  相似文献   

8.
IaaS公有云平台调度模型研究   总被引:3,自引:2,他引:1  
抽象出IaaS公有云平台的服务模型,基于排队论对平台服务模式、队列长度、调度服务器设置等进行了优化分析。在此基础上提出一种基于IaaS平台需求向量的调度模型,根据需求与可用资源的匹配度从平台管理的物理机集合中筛选出可用的宿主机,若一次性无法找到符合要求的宿主机,平台调度算法结合虚拟机迁移操作,对物理资源进行重新分配,在实现平台资源利用率最大化的同时,保障了平台的可用性。将该算法应用在自主研发的云计算平台上,实验结果验证了该算法的可行性。  相似文献   

9.
The Journal of Supercomputing - Scientific workflows are used to process large amounts of data and perform complex analyses; thus, they require powerful computing resources to produce the desired...  相似文献   

10.
A robust scheduling method based on a multi-objective immune algorithm   总被引:2,自引:0,他引:2  
A robust scheduling method is proposed to solve uncertain scheduling problems. An uncertain scheduling problem is modeled by a set of workflow models, and then a scheduling scheme (solution) of the problem can be evaluated by workflow simulations executed with the workflow models in the set. A multi-objective immune algorithm is presented to find Pareto optimal robust scheduling schemes that have good performance for each model in the set. The two optimization objectives for scheduling schemes are the indices of the optimality and robustness of the scheduling results. An antibody represents a resource allocation scheme, and the methods of antibody coding and decoding are designed to deal with resource conflicts during workflow simulations. Experimental tests show that the proposed method can generate a robust scheduling scheme that is insensitive to uncertain scheduling environments.  相似文献   

11.
To enable the immediate and efficient dispatch of relief to victims of disaster, this study proposes a greedy-search-based, multi-objective, genetic algorithm capable of regulating the distribution of available resources and automatically generating a variety of feasible emergency logistics schedules for decision-makers. The proposed algorithm dynamically adjusts distribution schedules from various supply points according to the requirements at demand points in order to minimize unsatisfied demand for resources, time to delivery, and transportation costs. The proposed algorithm was applied to the case of the Chi–Chi earthquake in Taiwan to verify its performance. Simulation results demonstrate that under conditions of a limited/unlimited number of available vehicles, the proposed algorithm outperforms the MOGA and standard greedy algorithm in ‘time to delivery’ by an average of 63.57% and 46.15%, respectively, based on 10,000 iterations.  相似文献   

12.
基于NSGA-II的改进多目标遗传算法   总被引:1,自引:0,他引:1  
在已有多目标优化算法(NSGA-II)研究和分析的基础上,为加快收敛速度,提高收敛精度,设计了新的初始筛选机制,改进了交叉算子的系数生成,提出了更为合理的排挤机制。通过典型应用函数的计算测试,结果表明:上述改进不仅具有较高的计算效率,而且能够得到分布更为合理的解,且能保持解的多样性分布。  相似文献   

13.
在已有多目标优化算法(NSGA-II)研究和分析的基础上,为加快收敛速度,提高收敛精度,设计了新的初始筛选机制,改进了交叉算子的系数生成,提出了更为合理的排挤机制。通过典型应用函数的计算测试,结果表明:上述改进不仅具有较高的计算效率,而且能够得到分布更为合理的解,且能保持解的多样性分布。  相似文献   

14.
In Infrastructure-as-a-Service (IaaS) cloud computing, computational resources are provided to remote users in the form of leases. For a cloud user, he/she can request multiple cloud services simultaneously. In this case, parallel processing in the cloud system can improve the performance. When applying parallel processing in cloud computing, it is necessary to implement a mechanism to allocate resource and schedule the execution order of tasks. Furthermore, a resource optimization mechanism with preemptable task execution can increase the utilization of clouds. In this paper, we propose two online dynamic resource allocation algorithms for the IaaS cloud system with preemptable tasks. Our algorithms adjust the resource allocation dynamically based on the updated information of the actual task executions. And the experimental results show that our algorithms can significantly improve the performance in the situation where resource contention is fierce.  相似文献   

15.
在NSGA-Ⅱ算法的基础上,对NSGA-Ⅱ构造非支配集的方法进行了改进,用擂台赛法则构造非支配集,当非支配集小于种群大小时,采用随机算子在可行域内随机产生新的解个体填充到下一代父种群中,形成了一种新的多目标遗传算法。在实验部分将改进后的算法和NSGA-II进行了性能比较,实验结果表明改进后的算法具有良好的分布性,算法运行效率也较高。  相似文献   

16.
针对多技能员工受限的多项目调度问题的特点,建立了以项目群的总工期及总费用最小为目标的调度模型;将云模型嵌入到基于Pareto的向量评价微粒群算法(VEPSO-BP)中,提出了一种新的云多目标微粒群算法(CMOPSO);该算法结合任务分配矩阵及开工时间设计了微粒编码,能根据微粒适应度自动调整惯性因子;结合软件研发实例测试了CMOPSO的性能,与VEPSO-BP进行了对比;实验结果表明CMOPSO能取得更为丰富且优化效果更好的Pareto非支配解。  相似文献   

17.
Cloud computing is an emerging technology in a distributed environment with a collection of large-scale heterogeneous systems. One of the challenging issues in the cloud data center is to select the minimum number of virtual machine (VM) instances to execute the tasks of a workflow within a time limit. The objectives of such a strategy are to minimize the total execution time of a workflow and improve resource utilization. However, the existing algorithms do not guarantee to achieve high resource utilization although they have abilities to achieve high execution efficiency. The higher resource utilization depends on the reusability of VM instances. In this work, we propose a new intelligent water drops based workflow scheduling algorithm for Infrastructure-as-a-Service (IaaS) cloud. The objectives of the proposed algorithm are to achieve higher resource utilization and minimize the makespan within the given deadline and budget constraints. The first contribution of the algorithm is to find multiple partial critical paths (PCPs) of a workflow which helps in finding suitable VM instances. The second contribution is a scheduling strategy for PCP-VM assignment for assigning the VM instances. The proposed algorithm is evaluated through various simulation runs using synthetic datasets and various performance metrics. Through comparison, we show the superior performance of the proposed algorithm over the existing ones.  相似文献   

18.
针对已有云计算任务调度算法为实现最短时间跨度而不能兼顾负载均衡和服务质量的问题,提出基于遗传算法和蚁群算法融合的QoS约束任务调度策略CAAC。CAAC利用任务的预测完成时间和成本耗费定义适应度函数;通过遗传算子全局搜索最优解,融合蚁群算子提高解的精确度;当任务数量大于50时,该算法收敛速度和资源利用率比蚁群算法平均提高4.7'和30.8'。仿真结果表明,该算法在保证服务质量和资源负载均衡方面具有优越性。  相似文献   

19.
Cloud computing is a relatively new concept in the distributed systems and is widely accepted as a new solution for high performance and distributed computing. Its dynamisms in providing virtual resources for organisations and laboratories and its pay-per-use policy make it very popular. A workflow models a process consisting of a series of steps that shape an application. Workflow scheduling is the method for assigning each workflow task to a processing resource in a way that specific workflow rules are satisfied. Some scheduling algorithms for workflows may assume some quality of service parameter such as cost and deadline. Some efforts have been done on workflow scheduling on cloud computing environments with different service level agreements. But most of them suffer from low speed. Here, we introduce a new hybrid heuristic algorithm based on particle swarm optimisation (PSO) and gravitation search algorithms. The proposed algorithm, in addition to processing cost and transfer cost, takes deadline limitations into account. The proposed workflow scheduling approach can be used by both end-users and utility providers. The CloudSim toolkit is used as a cloud environment simulator and the Amazon EC2 pricing is the reference pricing used. Our experimental result shows about 70% cost reduction, in comparison to non-heuristic implementations, 30% cost reduction in comparison to PSO, 30% cost reduction in comparison to gravitational search algorithm and 50% cost reduction in comparison to hybrid genetic-gravitational algorithm.  相似文献   

20.
This paper presents a two-stage genetic algorithm (2S-GA) for multi-objective Job Shop scheduling problems. The 2S-GA is proposed with three criteria: Minimize makespan, Minimize total weighted earliness, and Minimize total weighted tardiness. The proposed algorithm is composed of two Stages: Stage 1 applies parallel GA to find the best solution of each individual objective function with migration among populations. In Stage 2 the populations are combined. The evolution process of Stage 2 is based on Steady-State GA using the weighted aggregating objective function. The algorithm developed can be used with one or two objectives without modification. The genetic algorithm is designed and implemented with the GALIB object library. The random keys representation is applied to the problem. The schedules are constructed using a permutation with m-repetitions of job numbers. Performance of the proposed algorithm is tested on published benchmark instances and compared with results from other published approaches for both the single objective and multi-objective cases. The experimental results show that 2S-GA is effective and efficient to solve job shop scheduling problem in term of solution quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号