首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
RU486 is a glucocorticoid and progesterone antagonist. In glucocorticoid-responsive fibroblasts, it mediates little or no induction of a truncated, hormone-responsive mouse mammary tumor virus promoter; moreover, it abrogates the induction mediated by the glucocorticoid agonist, dexamethasone. However, when the fibroblasts are treated with activators of protein kinase A, 8-Br-cAMP or forskolin, along with RU486, the steroid now acts as a partial agonist, capable of mediating an induction of hormone-responsive reporter genes. In addition, the ability of RU486 to block the action of the glucocorticoid agonist, dexamethasone, is compromised by concomitant treatment with 8-Br-cAMP. Activators of protein kinase C fail to elicit these phenomena. Induction of gene expression in the presence of 8-Br-cAMP is dependent on the dose of RU486 over a range consistent with a glucocorticoid receptor-mediated mechanism. An antagonist, ZK98 299, which unlike RU486 is not thought to permit receptor binding to DNA, is not activated by 8-Br-cAMP. The elicitation of RU486 agonist activity cannot be attributed solely to idiosyncrasies of the cell line or the promoter. Similar phenomena are observed in another glucocorticoid-responsive fibroblast line. Furthermore, RU486 can induce a minimal promoter bearing two copies of a synthetic receptor target site. However, we have identified at least one promoter toward which RU486 still behaves as an antagonist despite 8-Br-cAMP treatment. These observations suggest that the unmasking of latent agonist activity in a type II antagonist is not an isolated phenomenon and may, therefore, be seen with other receptors and antagonists. The finding that modulation of cellular signal transduction pathways can unmask agonist activity in an otherwise effective steroid antagonist has significant implications for the use of steroid antagonists in the clinical setting and could represent a heretofore unrecognized mechanism for the development of steroid resistance.  相似文献   

2.
3.
4.
5.
During in vitro decidualization of human endometrial stromal cells (HESCs), medroxyprogesterone acetate (MPA) inhibits expression of the potent extracellular matrix (ECM)-degrading protease stromelysin-1 (MMP-3), but enhances PRL expression. Consistent with its priming role in vivo, estradiol (E2) augments these effects. In the current study, immunoblot analysis revealed that coincubation with 10(-6) M RU 486 blocked the inhibition in HESC-secreted MMP-3 levels (50,000 mol wt) evoked by 10(-8) M E2 + 10(-7) M MPA. Although MPA can act as a glucocorticoid, the HESCs were refractory to 10(-7) M dexamethasone added alone or with E2. Because E2 elevates progesterone but not glucocorticoid receptor levels, MPA and RU 486 control MMP-3 expression as a progestin and antiprogestin, respectively. To study RU 486 involvement in steroid withdrawal leading to menstruation, HESCs were decidualized during 10 days incubation with E2 + MPA, and parallel cultures were kept in E2 + MPA or withdrawn to either control or RU 486-containing medium. Compared with E2 + MPA-suppressed HESCs, increases in levels of secreted MMP-3 (2.0-fold), and its 2.1-kilobase messenger RNA (10-fold) were observed in HESCs after 4 days of withdrawal to control medium, with much greater increases seen in RU 486-containing medium (10-fold protein, 100-fold messenger RNA). Previously, we showed that RU 486 up-regulated E2 + MPA-inhibited plasminogen activator expression in the cultured HESCs. Extrapolation of these in vitro observations to endometrial events following RU 486 administration suggests that coordinate enhancement of MMP-3 and plasminogen activator expression promotes proteolysis of the stromal/decidual ECM, which leads to endometrial sloughing. Moreover, destabilization of endometrial microvessels resulting from degradation of their surrounding ECM is consistent with the heavy menstrual bleeding stemming from RU 486 administration. However, in contrast to the marked RU 486-initiated reversal of MMP-3 expression, RU 486 did not significantly reverse E2 + MPA-enhanced PRL secretion by the cultured HESCs. Interestingly, decidual PRL, unlike decidual MMP-3, does not appear to play a role in menstruation. Interleukin-1 beta counteracted E2 + MPA-mediated inhibition of secreted MMP-3 levels, implying that leukocyte/trophoblast-derived cytokines can modulate steroid-regulated MMP-3 expression by stromal/decidual cells during menstruation and pregnancy.  相似文献   

6.
We examined the mechanism(s) by which the progesterone receptor (PR) is able to inhibit glucocorticoid receptor (GR) activation from the mouse mammary tumor virus (MMTV) promoter in vivo. Using specific hormone antagonists, we demonstrate that the PR complexed with an type II antiprogestin blocks glucocorticoid-induced activation of the MMTV promoter. However, when complexed with a type I antiprogestin the PR is unable to block glucocorticoid-induced activation. PR repression of GR activity results from the inhibition of the ability of the GR to remodel chromatin such that the antiprogestin-occupied/PR prevents the glucocorticoid induced assembly of a preinitiation complex at MMTV promoter. These experiments suggest that the specific chromatin organization of the MMTV promoter provides a mechanism for regulating cross-talk between the GR and PR in vivo.  相似文献   

7.
8.
9.
The biochemical maturation of the lung in late gestation and in the young animal is regulated by glucocorticoids. The present study was aimed at dissociating the different glucocorticoid receptor sites involved in these regulatory functions. The obese Zucker rat was selected as a model for this study as it exhibits hypersensitivity to glucocorticoid hormone action by virtue of its elevated receptor numbers and activity. Two synthetic steroid analogues were administered to obese animals; RU28362, a specific type II receptor agonist, and the type II antagonist RU486. RU28362 promoted a strong catabolic effect, which was associated with reduced food intake and the abolition of growth in the rats. The agonist, RU28362, attenuated developmental increases in antioxidant enzyme activities, and altered the growth of the tissue. At the age studied, development of the lung phosphatidylcholine (PC) system was almost complete, but RU28362 increased disaturated PC 16:0/16:0 concentrations by almost 2-fold, and altered the molecular composition of total pulmonary PC. RU486 attenuated the growth of the rats and reduced their food intake. Treatment with the type II antagonist attenuated lung growth and increased the activities of pulmonary copper zinc (Cu/Zn) and manganese (Mn) superoxide dismutases. RU486 had no effect on lung PC concentrations and molecular composition. The data suggest a role for type I glucocorticoid receptors in the regulation of the antioxidant enzyme system in the lung, as type II antagonism will channel endogenous glucocorticoid binding to the type I site. Type II receptor binding would appear to play a role in regulating the lung PC content.  相似文献   

10.
11.
OBJECTIVE: To assess the action of RU486 (mifepristone), in the presence and absence of P, on PRL production by explant cultures of leiomyoma and myometrium. DESIGN: Explant cultures using tissue from nine premenopausal women undergoing hysterectomy in the proliferative phase of the menstrual cycle; immunohistochemical staining of tissue sections from five patients for P receptor (PR) subtype. MAIN OUTCOME MEASURES: Prolactin secretion (measured by RIA), lactate dehydrogenase secretion (measured by quantitative colorimetric assay), and immunohistochemistry for PR subtype. RESULTS: Prolactin secretion was decreased in leiomyomas by RU486 at concentrations of 10(-7) M and 10(-5)M when normal serum-containing medium was used. In experiments with all detectable P removed from serum, PRL secretion was suppressed in both leiomyomas and myometrium at an RU486 concentration of 10(-7)M. Immunohistochemistry results suggest that the A form of the PR is the dominant form in both leiomyomas and myometrium. CONCLUSIONS: Prolactin production is suppressed in both leiomyomas and myometrium after treatment with RU486 in vitro, and this suppression may serve as a marker for the clinical effectiveness of agents used in the treatment of leiomyomas.  相似文献   

12.
13.
The aim of this study was to determine the ability of the ginsenosides, extracts of Panax ginseng C.A. Meyer, to cause differentiation of F9 teratocarcinoma stem cells as a model system. F9 stem cells cultured in the presence of the ginsenosides together with dibutyryl cyclic AMP (dbcAMP) became parietal endoderm-like cells. Moreover, the expression of differentiation marker genes, such as laminin B1 and type IV collagen, was increased after treatment with the ginsenosides. Among the various purified ginsenosides, Rh1 and Rh2 were the most effective at causing differentiation of F9 cells. Since ginsenosides and glucocorticoid hormone have similar chemical structures, we examined the possibility of the involvement of a glucocorticoid receptor (GR) in the differentiation process induced by the ginsenosides. According to Southwestern blot analysis, a 94 kDa protein regarded as a GR was detected in F9 cells cultured in the medium containing the ginsenosides Rh1 or Rh2. In addition, F9 stem cells treated with the ginsenosides Rh1 or Rh2 and with RU486, a glucocorticoid antagonist with a high affinity for the GR, did not differentiate into endoderm cells morphologically, and the expression of laminin B1 gene was not induced in these cells. In a gel mobility shift assay, protein factors capable of binding to the glucocorticoid responsive element (GRE) specifically were detected in nuclear extracts of the ginsenoside-treated F9 cells. Moreover, overexpression of GR by cotransfection of GR expression vector and GRE-luciferase vector enhanced the transactivation activity of GRE promoter in the presence of ginsenosides Rh1 or Rh2 and was further augmented by dbcAMP. In addition, ginsenosides Rh1 and Rh2 bound to a GR assessed by whole-cell binding assay, even though the specific binding affinity was weaker compared to dexamethasone. Based on these data, we suggest that the ginsenosides Rh1 and Rh2 cause the differentiation of F9 cells and the effects of ginsenosides might be exerted via binding with a GR or its analogous nuclear receptor.  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号